BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12444102)

  • 61. Schwannomin isoform-1 interacts with syntenin via PDZ domains.
    Jannatipour M; Dion P; Khan S; Jindal H; Fan X; Laganière J; Chishti AH; Rouleau GA
    J Biol Chem; 2001 Aug; 276(35):33093-100. PubMed ID: 11432873
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A proteasome-resistant fragment of NIK mediates oncogenic NF-κB signaling in schwannomas.
    Gehlhausen JR; Hawley E; Wahle BM; He Y; Edwards D; Rhodes SD; Lajiness JD; Staser K; Chen S; Yang X; Yuan J; Li X; Jiang L; Smith A; Bessler W; Sandusky G; Stemmer-Rachamimov A; Stuhlmiller TJ; Angus SP; Johnson GL; Nalepa G; Yates CW; Wade Clapp D; Park SJ
    Hum Mol Genet; 2019 Feb; 28(4):572-583. PubMed ID: 30335132
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Genesis and biology of vestibular schwannomas.
    Roche PH; Bouvier C; Chinot O; Figarella-Branger D
    Prog Neurol Surg; 2008; 21():24-31. PubMed ID: 18810196
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas.
    Mitchell TJ; John S
    Immunology; 2005 Mar; 114(3):301-12. PubMed ID: 15720432
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) interacts with PELP1 and activates MAPK.
    Rayala SK; Hollander Pd; Balasenthil S; Molli PR; Bean AJ; Vadlamudi RK; Wang RA; Kumar R
    J Biol Chem; 2006 Feb; 281(7):4395-403. PubMed ID: 16352611
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Tumor suppressor schwannomin/merlin is critical for the organization of Schwann cell contacts in peripheral nerves.
    Denisenko N; Cifuentes-Diaz C; Irinopoulou T; Carnaud M; Benoit E; Niwa-Kawakita M; Chareyre F; Giovannini M; Girault JA; Goutebroze L
    J Neurosci; 2008 Oct; 28(42):10472-81. PubMed ID: 18923024
    [TBL] [Abstract][Full Text] [Related]  

  • 67. All in a name: schwannomin versus merlin.
    Welling DB; Chang LS
    Am J Otol; 2000 Mar; 21(2):289. PubMed ID: 10733201
    [No Abstract]   [Full Text] [Related]  

  • 68. Signaling, drugs and apoptosis of myeloma cells.
    Carroll M; Abrams CS
    Cancer Biol Ther; 2004 Feb; 3(2):195-6. PubMed ID: 14976430
    [No Abstract]   [Full Text] [Related]  

  • 69. RKIP Induction Promotes Tumor Differentiation via SOX2 Degradation in NF2-Deficient Conditions.
    Cho JH; Park S; Kim S; Kang SM; Woo TG; Yoon MH; Lee H; Jeong M; Park YH; Kim H; Han YT; Suh YG; Kim BH; Kwon Y; Yun H; Park BJ
    Mol Cancer Res; 2022 Mar; 20(3):412-424. PubMed ID: 34728553
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The protein 4.1 tumor suppressor, DAL-1, impairs cell motility, but regulates proliferation in a cell-type-specific fashion.
    Gutmann DH; Hirbe AC; Huang ZY; Haipek CA
    Neurobiol Dis; 2001 Apr; 8(2):266-78. PubMed ID: 11300722
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Loss of NF2 Induces TGFβ Receptor 1-mediated Noncanonical and Oncogenic TGFβ Signaling: Implication of the Therapeutic Effect of TGFβ Receptor 1 Inhibitor on NF2 Syndrome.
    Cho JH; Oh AY; Park S; Kang SM; Yoon MH; Woo TG; Hong SD; Hwang J; Ha NC; Lee HY; Park BJ
    Mol Cancer Ther; 2018 Nov; 17(11):2271-2284. PubMed ID: 30135214
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Schwannomin: new insights into this member of the band 4.1 superfamily.
    Belliveau MJ; Lutchman M; Claudio JO; Marineau C; Rouleau GA
    Biochem Cell Biol; 1995; 73(9-10):733-7. PubMed ID: 8714694
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Isolation and characterization of an aggresome determinant in the NF2 tumor suppressor.
    Gautreau A; Fievet BT; Brault E; Antony C; Houdusse A; Louvard D; Arpin M
    J Biol Chem; 2003 Feb; 278(8):6235-42. PubMed ID: 12471027
    [TBL] [Abstract][Full Text] [Related]  

  • 74. STAT isoforms: mediators of STAT specificity or leukemogenesis?
    Ilaria RL
    Leuk Res; 2001 Jun; 25(6):483-4. PubMed ID: 11337020
    [No Abstract]   [Full Text] [Related]  

  • 75. Transcriptomic signature of painful human neurofibromatosis type 2 schwannomas.
    Kukutla P; Ahmed SG; DuBreuil DM; Abdelnabi A; Cetinbas M; Fulci G; Aldikacti B; Stemmer-Rachamimov A; Plotkin SR; Wainger B; Sadreyev RI; Brenner GJ
    Ann Clin Transl Neurol; 2021 Jul; 8(7):1508-1514. PubMed ID: 34053190
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Normal membrane localization and actin association of the NF2 tumor suppressor protein are dependent on folding of its N-terminal domain.
    Brault E; Gautreau A; Lamarine M; Callebaut I; Thomas G; Goutebroze L
    J Cell Sci; 2001 May; 114(Pt 10):1901-12. PubMed ID: 11329377
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Loss of SOX10 function contributes to the phenotype of human Merlin-null schwannoma cells.
    Doddrell RD; Dun XP; Shivane A; Feltri ML; Wrabetz L; Wegner M; Sock E; Hanemann CO; Parkinson DB
    Brain; 2013 Feb; 136(Pt 2):549-63. PubMed ID: 23413263
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evolution and origin of HRS, a protein interacting with Merlin, the Neurofibromatosis 2 gene product.
    Omelyanchuk LV; Pertseva JA; Burns SS; Chang LS
    Gene Regul Syst Bio; 2009 Oct; 3():143-57. PubMed ID: 20054405
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Emerging therapeutic targets in schwannomas and other merlin-deficient tumors.
    Ammoun S; Hanemann CO
    Nat Rev Neurol; 2011 Jun; 7(7):392-9. PubMed ID: 21647202
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells.
    Wang T; Niu G; Kortylewski M; Burdelya L; Shain K; Zhang S; Bhattacharya R; Gabrilovich D; Heller R; Coppola D; Dalton W; Jove R; Pardoll D; Yu H
    Nat Med; 2004 Jan; 10(1):48-54. PubMed ID: 14702634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.