These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12444648)

  • 1. S-nitrosocysteine and cystine from reaction of cysteine with nitrous acid. A kinetic investigation.
    Grossi L; Montevecchi PC
    J Org Chem; 2002 Nov; 67(24):8625-30. PubMed ID: 12444648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrosation of cysteine and reduced glutathione by nitrite at physiological pH.
    Kuo WN; Kocis JM; Nibbs J
    Front Biosci; 2003 May; 8():a62-9. PubMed ID: 12700032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New processes in the environmental chemistry of nitrite. 2. The role of hydrogen peroxide.
    Vione D; Maurino V; Minero C; Borghesi D; Lucchiari M; Pelizzetti E
    Environ Sci Technol; 2003 Oct; 37(20):4635-41. PubMed ID: 14594372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-Transnitrosation reactions of hydrogen sulfide (H
    Tsikas D; Böhmer A
    Nitric Oxide; 2017 May; 65():22-36. PubMed ID: 28185882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detailed mechanistic investigation into the S-nitrosation of cysteamine.
    Morakinyo MK; Chipinda I; Hettick J; Siegel PD; Abramson J; Strongin R; Martincigh BS; Simoyi RH
    Can J Chem; 2012; 9(9):724-738. PubMed ID: 26594054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction.
    Wink DA; Nims RW; Darbyshire JF; Christodoulou D; Hanbauer I; Cox GW; Laval F; Laval J; Cook JA; Krishna MC
    Chem Res Toxicol; 1994; 7(4):519-25. PubMed ID: 7981416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic study on the nitrosation of dibenzylamine in a model system.
    Ayala NL; Fiddler W; Gates RA; Pensabene JW
    Food Chem Toxicol; 1994 Nov; 32(11):1015-9. PubMed ID: 7959455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitroso group transfer in s-nitrosocysteine: evidence of a new decomposition pathway for nitrosothiols.
    Adam C; García-Río L; Leis JR; Ribeiro L
    J Org Chem; 2005 Aug; 70(16):6353-61. PubMed ID: 16050697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of transmembrane S-nitrosothiol transport.
    Zhang Y; Hogg N
    Proc Natl Acad Sci U S A; 2004 May; 101(21):7891-6. PubMed ID: 15148403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid.
    Nagy P; Ashby MT
    J Am Chem Soc; 2007 Nov; 129(45):14082-91. PubMed ID: 17939659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanisms of S-nitrosothiol decomposition catalyzed by iron.
    Vanin AF; Papina AA; Serezhenkov VA; Koppenol WH
    Nitric Oxide; 2004 Mar; 10(2):60-73. PubMed ID: 15135359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of NO release by N1-nitrosomelatonin: nucleophilic attack versus reducing pathways.
    De Biase PM; Turjanski AG; Estrin DA; Doctorovich F
    J Org Chem; 2005 Jul; 70(15):5790-8. PubMed ID: 16018670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic and direct oxidation of cysteine by octacyanomolybdate(V).
    Hung M; Stanbury DM
    Inorg Chem; 2005 May; 44(10):3541-50. PubMed ID: 15877437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct oxidation of L-cysteine by [FeIII(bpy)2(CN)2]+ and [FeIII(bpy)(CN)4]-.
    Wang X; Stanbury DM
    Inorg Chem; 2008 Feb; 47(3):1224-36. PubMed ID: 18177037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas-phase fragmentation of long-lived cysteine radical cations formed via NO loss from protonated S-nitrosocysteine.
    Ryzhov V; Lam AK; O'Hair RA
    J Am Soc Mass Spectrom; 2009 Jun; 20(6):985-95. PubMed ID: 19217308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive sulfur species: kinetics and mechanism of the hydrolysis of cysteine thiosulfinate ester.
    Nagy P; Ashby MT
    Chem Res Toxicol; 2007 Sep; 20(9):1364-72. PubMed ID: 17764150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH and metal ions on the decomposition rate of S-nitrosocysteine.
    Gu J; Lewis RS
    Ann Biomed Eng; 2007 Sep; 35(9):1554-60. PubMed ID: 17510805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that intrinsic iron but not intrinsic copper determines S-nitrosocysteine decomposition in buffer solution.
    Vanin AF; Muller B; Alencar JL; Lobysheva II; Nepveu F; Stoclet JC
    Nitric Oxide; 2002 Nov; 7(3):194-209. PubMed ID: 12381416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-translational modification in the gas phase: mechanism of cysteine S-nitrosylation via ion-molecule reactions.
    Osburn S; O'Hair RA; Black SM; Ryzhov V
    Rapid Commun Mass Spectrom; 2011 Nov; 25(21):3216-22. PubMed ID: 22006383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pt-NiCo nanostructures with facilitated electrocatalytic activities for sensitive determination of intracellular thiols with long-term stability.
    Zhang F; Wen M; Cheng M; Liu D; Zhu A; Tian Y
    Chemistry; 2010 Sep; 16(36):11115-20. PubMed ID: 20687145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.