These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 12444920)

  • 1. Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry.
    Kennelly PJ
    Biochem J; 2003 Mar; 370(Pt 2):373-89. PubMed ID: 12444920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein kinases and protein phosphatases in prokaryotes: a genomic perspective.
    Kennelly PJ
    FEMS Microbiol Lett; 2002 Jan; 206(1):1-8. PubMed ID: 11786249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein phosphorylation and its role in archaeal signal transduction.
    Esser D; Hoffmann L; Pham TK; Bräsen C; Qiu W; Wright PC; Albers SV; Siebers B
    FEMS Microbiol Rev; 2016 Sep; 40(5):625-47. PubMed ID: 27476079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems.
    Galperin MY; Makarova KS; Wolf YI; Koonin EV
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29263101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Ser/Thr/Tyr phosphorylation in the Archaea.
    Kennelly PJ
    J Biol Chem; 2014 Apr; 289(14):9480-7. PubMed ID: 24554702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ser/Thr/Tyr protein phosphorylation in the archaeon Halobacterium salinarum--a representative of the third domain of life.
    Aivaliotis M; Macek B; Gnad F; Reichelt P; Mann M; Oesterhelt D
    PLoS One; 2009; 4(3):e4777. PubMed ID: 19274099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily.
    Leonard CJ; Aravind L; Koonin EV
    Genome Res; 1998 Oct; 8(10):1038-47. PubMed ID: 9799791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer.
    Uhrig RG; Kerk D; Moorhead GB
    Plant Physiol; 2013 Dec; 163(4):1829-43. PubMed ID: 24108212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide survey of prokaryotic O-protein phosphatases.
    Bhaduri A; Sowdhamini R
    J Mol Biol; 2005 Sep; 352(3):736-52. PubMed ID: 16095610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of two-component signal transduction.
    Koretke KK; Lupas AN; Warren PV; Rosenberg M; Brown JR
    Mol Biol Evol; 2000 Dec; 17(12):1956-70. PubMed ID: 11110912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein histidine kinases: assembly of active sites and their regulation in signaling pathways.
    Stewart RC
    Curr Opin Microbiol; 2010 Apr; 13(2):133-41. PubMed ID: 20117042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origins of modern proteomes.
    Kurland CG; Canbäck B; Berg OG
    Biochimie; 2007 Dec; 89(12):1454-63. PubMed ID: 17949885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activity of an ancient atypical protein kinase is stimulated by ADP-ribose in vitro.
    Haile JD; Kennelly PJ
    Arch Biochem Biophys; 2011 Jul; 511(1-2):56-63. PubMed ID: 21527241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Navigating the structure-function-evolutionary relationship of CsaA chaperone in archaea.
    Sharma A; Rani S; Goel M
    Crit Rev Microbiol; 2018 May; 44(3):274-289. PubMed ID: 28920507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic- and genome-derived insight into the evolution of N-glycosylation in Archaea.
    Kaminski L; Lurie-Weinberger MN; Allers T; Gophna U; Eichler J
    Mol Phylogenet Evol; 2013 Aug; 68(2):327-39. PubMed ID: 23567024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lining the pockets of kinases and phosphatases.
    Gold MG; Barford D; Komander D
    Curr Opin Struct Biol; 2006 Dec; 16(6):693-701. PubMed ID: 17084073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of protein phosphatases in plants and animals.
    Moorhead GB; De Wever V; Templeton G; Kerk D
    Biochem J; 2009 Jan; 417(2):401-9. PubMed ID: 19099538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of histidine biosynthesis in archaea: insights into the his genes structure and organization in LUCA.
    Fondi M; Emiliani G; Liò P; Gribaldo S; Fani R
    J Mol Evol; 2009 Nov; 69(5):512-26. PubMed ID: 19888544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin and radiation of the phosphoprotein phosphatase (PPP) enzymes of Eukaryotes.
    Kerk D; Mattice JF; Valdés-Tresanco ME; Noskov SY; Ng KK; Moorhead GB
    Sci Rep; 2021 Jul; 11(1):13681. PubMed ID: 34211082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.