BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12445261)

  • 21. T-lymphocyte development and models of thymopoietic reconstitution.
    Robertson P; Poznansky MC
    Transpl Infect Dis; 2003 Mar; 5(1):38-42. PubMed ID: 12791073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Committed precursors of B and T lymphocytes in chick embryo bursa of Fabricius, thymus, and bone marrow.
    Brand A; Galton J; Gilmour DG
    Eur J Immunol; 1983 Jun; 13(6):449-55. PubMed ID: 6190659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network.
    Bodey B; Bodey B; Kaiser HE
    In Vivo; 1997; 11(4):351-70. PubMed ID: 9292303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thymic export in aged sheep: a continuous role for the thymus throughout pre- and postnatal life.
    Cunningham CP; Kimpton WG; Holder JE; Cahill RN
    Eur J Immunol; 2001 Mar; 31(3):802-11. PubMed ID: 11241285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone marrow-derived hemopoietic precursors commit to the T cell lineage only after arrival in the thymic microenvironment.
    Heinzel K; Benz C; Martins VC; Haidl ID; Bleul CC
    J Immunol; 2007 Jan; 178(2):858-68. PubMed ID: 17202347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of intrathymic T-cell development by Lunatic Fringe- Notch1 interactions.
    Visan I; Yuan JS; Tan JB; Cretegny K; Guidos CJ
    Immunol Rev; 2006 Feb; 209():76-94. PubMed ID: 16448535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A wave of bipotent T/ILC-restricted progenitors shapes the embryonic thymus microenvironment in a time-dependent manner.
    Elsaid R; Meunier S; Burlen-Defranoux O; Soares-da-Silva F; Perchet T; Iturri L; Freyer L; Vieira P; Pereira P; Golub R; Bandeira A; Perdiguero EG; Cumano A
    Blood; 2021 Feb; 137(8):1024-1036. PubMed ID: 33025012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Age- and disease-related decline in immune function: an opportunity for "thymus-boosting" therapies.
    Berthiaume F; Aparicio CL; Eungdamrong J; Yarmush ML
    Tissue Eng; 1999 Dec; 5(6):499-514. PubMed ID: 10611542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into Thymus Development and Viral Thymic Infections.
    Albano F; Vecchio E; Renna M; Iaccino E; Mimmi S; Caiazza C; Arcucci A; Avagliano A; Pagliara V; Donato G; Palmieri C; Mallardo M; Quinto I; Fiume G
    Viruses; 2019 Sep; 11(9):. PubMed ID: 31505755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signal transduction in thymus development.
    Sen J
    Cell Mol Biol (Noisy-le-grand); 2001 Feb; 47(1):197-215. PubMed ID: 11292256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for a functional second thymus in mice.
    Terszowski G; Müller SM; Bleul CC; Blum C; Schirmbeck R; Reimann J; Pasquier LD; Amagai T; Boehm T; Rodewald HR
    Science; 2006 Apr; 312(5771):284-7. PubMed ID: 16513945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. T-lymphopoietic capacity of cord blood-derived CD34+ progenitor cells.
    Gardner JP; Rosenzweig M; Marks DF; Harper D; Gaynor K; Fallon RJ; Wall DA; Johnson RP; Scadden DT
    Exp Hematol; 1998 Sep; 26(10):991-9. PubMed ID: 9728935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Notch and lymphopoiesis: a view from the microenvironment.
    Parreira L; Neves H; Simões S
    Semin Immunol; 2003 Apr; 15(2):81-9. PubMed ID: 12681944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defect of thymocyte emigration in a T cell deficiency strain (CTS) of the mouse.
    Yagi H; Matsumoto M; Nakamura M; Makino S; Suzuki R; Harada M; Itoh T
    J Immunol; 1996 Oct; 157(8):3412-9. PubMed ID: 8871639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ontogeny of T lymphocytes.
    Owen JJ; Jenkinson EJ; Kingston R
    Ann Immunol (Paris); 1983; 134D(1):115-22. PubMed ID: 6354066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of zinc in pre- and postnatal mammalian thymic immunohistogenesis.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    In Vivo; 1998; 12(6):695-722. PubMed ID: 9891234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The thymus microenvironment in regulating thymocyte differentiation.
    Gameiro J; Nagib P; Verinaud L
    Cell Adh Migr; 2010; 4(3):382-90. PubMed ID: 20418658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The thymus exports long-lived fully committed T cell precursors that can colonize primary lymphoid organs.
    Lambolez F; Arcangeli ML; Joret AM; Pasqualetto V; Cordier C; Di Santo JP; Rocha B; Ezine S
    Nat Immunol; 2006 Jan; 7(1):76-82. PubMed ID: 16341216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thymic T-cell tolerance of neuroendocrine functions: physiology and pathophysiology.
    Geenen V; Kecha O; Brilot F; Hansenne I; Renard C; Martens H
    Cell Mol Biol (Noisy-le-grand); 2001 Feb; 47(1):179-88. PubMed ID: 11292253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of steady-state differentiation and mapping of intrathymic-signaling environments by stem cell transplantation in nonirradiated mice.
    Porritt HE; Gordon K; Petrie HT
    J Exp Med; 2003 Sep; 198(6):957-62. PubMed ID: 12975459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.