These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12445465)

  • 1. Cation binding mode of fully oxidised calmodulin explained by the unfolding of the apostate.
    Lafitte D; Tsvetkov PO; Devred F; Toci R; Barras F; Briand C; Makarov AA; Haiech J
    Biochim Biophys Acta; 2002 Nov; 1600(1-2):105-10. PubMed ID: 12445465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase.
    Yao Y; Yin D; Jas GS; Kuczer K; Williams TD; Schöneich C; Squier TC
    Biochemistry; 1996 Feb; 35(8):2767-87. PubMed ID: 8611584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-energy simulations of the oxidation of c-terminal methionines in calmodulin.
    Jas GS; Kuczera K
    Proteins; 2002 Aug; 48(2):257-68. PubMed ID: 12112694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural uncoupling between opposing domains of oxidized calmodulin underlies the enhanced binding affinity and inhibition of the plasma membrane Ca-ATPase.
    Chen B; Mayer MU; Squier TC
    Biochemistry; 2005 Mar; 44(12):4737-47. PubMed ID: 15779900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two domains of the smoothelin-like 1 protein bind apo- and calcium-calmodulin independently.
    Ulke-Lemée A; Ishida H; Chappellaz M; Vogel HJ; MacDonald JA
    Biochim Biophys Acta; 2014 Sep; 1844(9):1580-90. PubMed ID: 24905744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-pressure SANS and fluorescence unfolding study of calmodulin.
    Gibrat G; Hoa GH; Craescu CT; Assairi L; Blouquit Y; Annighöfer B; May RP; Bellissent-Funel MC
    Biochim Biophys Acta; 2014 Sep; 1844(9):1560-8. PubMed ID: 24862246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An altered mode of calcium coordination in methionine-oxidized calmodulin.
    Jones EM; Squier TC; Sacksteder CA
    Biophys J; 2008 Dec; 95(11):5268-80. PubMed ID: 18723592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal unfolding simulations of apo-calmodulin using leap-dynamics.
    Kleinjung J; Fraternali F; Martin SR; Bayley PM
    Proteins; 2003 Mar; 50(4):648-56. PubMed ID: 12577271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of conformational stability in calmodulin upon methionine oxidation.
    Gao J; Yin DH; Yao Y; Sun H; Qin Z; Schöneich C; Williams TD; Squier TC
    Biophys J; 1998 Mar; 74(3):1115-34. PubMed ID: 9512014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenylalanine fluorescence studies of calcium binding to N-domain fragments of Paramecium calmodulin mutants show increased calcium affinity correlates with increased disorder.
    VanScyoc WS; Shea MA
    Protein Sci; 2001 Sep; 10(9):1758-68. PubMed ID: 11514666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of the calmodulin-dependent inhibition of the RyR1 calcium release channel upon oxidation of methionines in calmodulin.
    Boschek CB; Jones TE; Smallwood HS; Squier TC; Bigelow DJ
    Biochemistry; 2008 Jan; 47(1):131-42. PubMed ID: 18076146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique methionine-aromatic interactions govern the calmodulin redox sensor.
    Walgenbach DG; Gregory AJ; Klein JC
    Biochem Biophys Res Commun; 2018 Oct; 505(1):236-241. PubMed ID: 30243720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific methionine oxidation initiates calmodulin degradation by the 20S proteasome.
    Balog EM; Lockamy EL; Thomas DD; Ferrington DA
    Biochemistry; 2009 Apr; 48(13):3005-16. PubMed ID: 19231837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal binding affinity and structural properties of calmodulin-like protein 14 from Arabidopsis thaliana.
    Vallone R; La Verde V; D'Onofrio M; Giorgetti A; Dominici P; Astegno A
    Protein Sci; 2016 Aug; 25(8):1461-71. PubMed ID: 27124620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calmodulin-peptide interactions: apocalmodulin binding to the myosin light chain kinase target-site.
    Hill TJ; Lafitte D; Wallace JI; Cooper HJ; Tsvetkov PO; Derrick PJ
    Biochemistry; 2000 Jun; 39(24):7284-90. PubMed ID: 10852728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mediating molecular recognition by methionine oxidation: conformational switching by oxidation of methionine in the carboxyl-terminal domain of calmodulin.
    Anbanandam A; Bieber Urbauer RJ; Bartlett RK; Smallwood HS; Squier TC; Urbauer JL
    Biochemistry; 2005 Jul; 44(27):9486-96. PubMed ID: 15996103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-terminal and C-terminal domains of calmodulin mediate FADD and TRADD interaction.
    Papoff G; Trivieri N; Marsilio S; Crielesi R; Lalli C; Castellani L; Balog EM; Ruberti G
    PLoS One; 2015; 10(2):e0116251. PubMed ID: 25643035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory implications of a novel mode of interaction of calmodulin with a double IQ-motif target sequence from murine dilute myosin V.
    Martin SR; Bayley PM
    Protein Sci; 2002 Dec; 11(12):2909-23. PubMed ID: 12441389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-linked stability of mutants of the C-domain of calmodulin.
    Hobson KF; Housley NA; Pedigo S
    Biophys Chem; 2005 Apr; 114(1):43-52. PubMed ID: 15792860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural stabilization of protein 4.1R FERM domain upon binding to apo-calmodulin: novel insights into the biological significance of the calcium-independent binding of calmodulin to protein 4.1R.
    Nunomura W; Sasakura D; Shiba K; Nakamura S; Kidokoro S; Takakuwa Y
    Biochem J; 2011 Dec; 440(3):367-74. PubMed ID: 21848512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.