These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12445610)

  • 1. The measurement of body segment inertial parameters using dual energy X-ray absorptiometry.
    Durkin JL; Dowling JJ; Andrews DM
    J Biomech; 2002 Dec; 35(12):1575-80. PubMed ID: 12445610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of body segment parameter differences between four human populations and the estimation errors of four popular mathematical models.
    Durkin JL; Dowling JJ
    J Biomech Eng; 2003 Aug; 125(4):515-22. PubMed ID: 12968576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating segment inertial parameters using fan-beam DXA.
    Wicke J; Dumas GA
    J Appl Biomech; 2008 May; 24(2):180-4. PubMed ID: 18579911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of body segment parameters using dual energy X-ray absorptiometry and three-dimensional geometry: an application in gait analysis.
    Lee MK; Le NS; Fang AC; Koh MT
    J Biomech; 2009 Feb; 42(3):217-22. PubMed ID: 19106000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive regression modeling of body segment parameters using individual-based anthropometric measurements.
    Merrill Z; Perera S; Cham R
    J Biomech; 2019 Nov; 96():109349. PubMed ID: 31615644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of clinical measures of total and regional body composition from a commercial 3-dimensional optical body scanner.
    Bennett JP; Liu YE; Quon BK; Kelly NN; Wong MC; Kennedy SF; Chow DC; Garber AK; Weiss EJ; Heymsfield SB; Shepherd JA
    Clin Nutr; 2022 Jan; 41(1):211-218. PubMed ID: 34915272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new geometric-based model to accurately estimate arm and leg inertial estimates.
    Wicke J; Dumas GA
    J Biomech; 2014 Jun; 47(8):1869-75. PubMed ID: 24735506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Body segment parameter estimation of the human lower leg using an elliptical model with validation from DEXA.
    Durkin JL; Dowling JJ
    Ann Biomed Eng; 2006 Sep; 34(9):1483-93. PubMed ID: 16847589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of a Bioelectrical Impedance Device against the Reference Method Dual Energy X-Ray Absorptiometry and Anthropometry for the Evaluation of Body Composition in Adults.
    Day K; Kwok A; Evans A; Mata F; Verdejo-Garcia A; Hart K; Ward LC; Truby H
    Nutrients; 2018 Oct; 10(10):. PubMed ID: 30308974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of regional adipose tissue depots: a DXA and CT comparison in cadavers of elderly persons.
    Scafoglieri A; Deklerck R; Tresignie J; De Mey J; Clarys JP; Bautmans I
    Exp Gerontol; 2013 Sep; 48(9):985-91. PubMed ID: 23871847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age and body mass index associations with body segment parameters.
    Merrill Z; Perera S; Chambers A; Cham R
    J Biomech; 2019 May; 88():38-47. PubMed ID: 30914188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upper extremity and trunk body segment parameters are affected by BMI and sex.
    Whittaker RL; Vidt ME; Lockley RME; Mourtzakis M; Dickerson CR
    J Biomech; 2021 Mar; 117():110230. PubMed ID: 33493714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of dual-energy X-ray absorptiometry in obese individuals.
    Tataranni PA; Ravussin E
    Am J Clin Nutr; 1995 Oct; 62(4):730-4. PubMed ID: 7572700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthropometric parameters in children: a comparison of values obtained from dual energy x-ray absorptiometry and cadaver-based estimates.
    Ganley KJ; Powers CM
    Gait Posture; 2004 Apr; 19(2):133-40. PubMed ID: 15013501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of percentage of body fat in 411 children and adolescents: a comparison of dual-energy X-ray absorptiometry with a four-compartment model.
    Sopher AB; Thornton JC; Wang J; Pierson RN; Heymsfield SB; Horlick M
    Pediatrics; 2004 May; 113(5):1285-90. PubMed ID: 15121943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioimpedance prediction of fat-free mass from dual-energy X-ray absorptiometry in a multi-ethnic group of 2-year-old children.
    Rush EC; Bristow S; Plank LD; Rowan J
    Eur J Clin Nutr; 2013 Feb; 67(2):214-7. PubMed ID: 23232588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement precision of body composition variables in elite wheelchair athletes, using dual-energy X-ray absorptiometry.
    Keil M; Totosy de Zepetnek JO; Brooke-Wavell K; Goosey-Tolfrey VL
    Eur J Sport Sci; 2016; 16(1):65-71. PubMed ID: 25307741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of fan beam dual energy x-ray absorptiometry to measure body composition of piglets.
    Koo WW; Hammami M; Hockman EM
    J Nutr; 2002 Jun; 132(6):1380-3. PubMed ID: 12042462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of dual x-ray absorptiometry for body-composition assessment of rats exposed to dietary stressors.
    Lukaski HC; Hall CB; Marchello MJ; Siders WA
    Nutrition; 2001; 17(7-8):607-13. PubMed ID: 11448581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.