BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12445639)

  • 1. A metabolic role of the glyoxylate and tricarboxylic acid cycles for development of the copper-tolerant brown-rot fungus Fomitopsis palustris.
    Yoon JJ; Hattori T; Shimada M
    FEMS Microbiol Lett; 2002 Nov; 217(1):9-14. PubMed ID: 12445639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the enzymes at the branchpoint between the citric acid cycle and the glyoxylate bypass in Escherichia coli.
    Nimmo HG; Borthwick AC; el-Mansi EM; Holms WH; MacKintosh C; Nimmo GA
    Biochem Soc Symp; 1987; 54():93-101. PubMed ID: 3333001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular localization of glyoxylate cycle key enzymes involved in oxalate biosynthesis of wood-destroying basidiomycete Fomitopsis palustris grown on glucose.
    Sakai S; Nishide T; Munir E; Baba K; Inui H; Nakano Y; Hattori T; Shimada M
    Microbiology (Reading); 2006 Jun; 152(Pt 6):1857-1866. PubMed ID: 16735748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of NADP-linked isocitrate dehydrogenase from the copper-tolerant wood-rotting basidiomycete Fomitopsis palustris.
    Yoon JJ; Hattori T; Shimada M
    Biosci Biotechnol Biochem; 2003 Jan; 67(1):114-20. PubMed ID: 12619682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of TCA cycle enzymes and aluminum stress in Pseudomonas fluorescens.
    Hamel RD; Appanna VD
    J Inorg Biochem; 2001 Nov; 87(1-2):1-8. PubMed ID: 11709206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-state modelling of metabolic flux between the tricarboxylic acid cycle and the glyoxylate bypass in Escherichia coli.
    el-Mansi EM; Dawson GC; Bryce CF
    Comput Appl Biosci; 1994 Jun; 10(3):295-9. PubMed ID: 7922686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of isocitrate lyase from the wood-destroying basidiomycete Fomitopsis palustris grown on glucose.
    Munir E; Hattori T; Shimada M
    Arch Biochem Biophys; 2002 Mar; 399(2):225-31. PubMed ID: 11888209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris.
    Munir E; Yoon JJ; Tokimatsu T; Hattori T; Shimada M
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11126-30. PubMed ID: 11553780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gluconeogenic precursor availability regulates flux through the glyoxylate shunt in
    Crousilles A; Dolan SK; Brear P; Chirgadze DY; Welch M
    J Biol Chem; 2018 Sep; 293(37):14260-14269. PubMed ID: 30030382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymes of the tricarboxylic acid cycle in Ancylostoma ceylanicum and Nippostrongylus brasiliensis.
    Singh SP; Katiyar JC; Srivastava VM
    J Parasitol; 1992 Feb; 78(1):24-9. PubMed ID: 1738065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Activity of NAD-dependent isocitrate dehydrogenase, isocitrate lyase, and malate dehydrogenase in Mucor circinelloides var. lusitanicus INMI under different modes of nitrogen supply].
    Mysiakina IS; Funtikova NS
    Mikrobiologiia; 2008; 77(4):453-9. PubMed ID: 18825970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Enzyme activity of citrate, glyoxylate and pentosephosphate cycles during synthesis of citric acids by Candida lipolytica].
    Glazunova LM; Finogenova TV
    Mikrobiologiia; 1976; 45():444-9. PubMed ID: 1004246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isocitrate dehydrogenase and glyoxylate cycle enzyme activities in Bradyrhizobium japonicum under various growth conditions.
    Green LS; Karr DB; Emerich DW
    Arch Microbiol; 1998 May; 169(5):445-51. PubMed ID: 9560426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar synthesis in Leptospira. II. Presence of glyoxylate cycle enzymes.
    Yanagihara Y; Kobayashi S; Mifuchi I
    Microbiol Immunol; 1984; 28(5):529-34. PubMed ID: 6472133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Central metabolism in Acinetobacter sp. grown on ethanol].
    Pirog TP; Kuz'minskaia IuV
    Mikrobiologiia; 2003; 72(4):459-65. PubMed ID: 14526533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Regulation of the glyoxylic cycle: effect of the NADPH/NADP ratio].
    Machado A
    Rev Esp Fisiol; 1982; 38 Suppl():141-6. PubMed ID: 7146569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria.
    Cozzone AJ
    Annu Rev Microbiol; 1998; 52():127-64. PubMed ID: 9891796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice.
    Yu L; Jiang J; Zhang C; Jiang L; Ye N; Lu Y; Yang G; Liu E; Peng C; He Z; Peng X
    J Exp Bot; 2010 Jun; 61(6):1625-34. PubMed ID: 20194922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the TCA and glyoxylate cycles in Brevibacterium flavum. I. Ingibition of isocitrate lyase and isocitrate dehydrogenase by organic acids related to the TCA and glyoxylate cycles.
    Ozaki H; Shiio I
    J Biochem; 1968 Sep; 64(3):355-63. PubMed ID: 5707822
    [No Abstract]   [Full Text] [Related]  

  • 20. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin.
    Shimizu M; Yuda N; Nakamura T; Tanaka H; Wariishi H
    Proteomics; 2005 Oct; 5(15):3919-31. PubMed ID: 16217726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.