These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12445708)

  • 1. Non-visual information does not drive saccade gain adaptation in monkeys.
    Seeberger T; Noto C; Robinson F
    Brain Res; 2002 Nov; 956(2):374-9. PubMed ID: 12445708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccadic gain modification: visual error drives motor adaptation.
    Wallman J; Fuchs AF
    J Neurophysiol; 1998 Nov; 80(5):2405-16. PubMed ID: 9819252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual error is the stimulus for saccade gain adaptation.
    Noto CT; Robinson FR
    Brain Res Cogn Brain Res; 2001 Oct; 12(2):301-5. PubMed ID: 11587898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of visual error size on saccade adaptation in monkey.
    Robinson FR; Noto CT; Bevans SE
    J Neurophysiol; 2003 Aug; 90(2):1235-44. PubMed ID: 12711711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct short-term and long-term adaptation to reduce saccade size in monkey.
    Robinson FR; Soetedjo R; Noto C
    J Neurophysiol; 2006 Sep; 96(3):1030-41. PubMed ID: 16672299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccades to stationary and moving targets differ in the monkey.
    Guan Y; Eggert T; Bayer O; Büttner U
    Exp Brain Res; 2005 Feb; 161(2):220-32. PubMed ID: 15517220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term adaptation of electrically induced saccades in monkey superior colliculus.
    Melis BJ; van Gisbergen JA
    J Neurophysiol; 1996 Sep; 76(3):1744-58. PubMed ID: 8890289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monkey superior colliculus activity during short-term saccadic adaptation.
    Frens MA; Van Opstal AJ
    Brain Res Bull; 1997; 43(5):473-83. PubMed ID: 9250621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge.
    Munoz DP; Wurtz RH
    J Neurophysiol; 1993 Aug; 70(2):559-75. PubMed ID: 8410157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of short-term saccadic adaptation on saccades evoked by electrical stimulation in the primate superior colliculus.
    Edelman JA; Goldberg ME
    J Neurophysiol; 2002 Apr; 87(4):1915-23. PubMed ID: 11929911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern.
    Fuchs AF; Robinson FR; Straube A
    J Neurophysiol; 1993 Nov; 70(5):1723-40. PubMed ID: 8294949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signals driving the adaptation of saccades that require spatial updating.
    Soetedjo R
    J Neurophysiol; 2018 Aug; 120(2):525-538. PubMed ID: 29694278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades.
    Takagi M; Zee DS; Tamargo RJ
    J Neurophysiol; 1998 Oct; 80(4):1911-31. PubMed ID: 9772249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning?
    Soetedjo R; Kojima Y; Fuchs AF
    J Neurophysiol; 2008 Oct; 100(4):1949-66. PubMed ID: 18650308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexibility of saccade adaptation in the monkey: different gain states for saccades in the same direction.
    Watanabe S; Noto CT; Fuchs AF
    Exp Brain Res; 2000 Jan; 130(2):169-76. PubMed ID: 10672470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of function after lesions in the superior temporal sulcus in the monkey.
    Yamasaki DS; Wurtz RH
    J Neurophysiol; 1991 Sep; 66(3):651-73. PubMed ID: 1753278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of two methods of producing adaptation of saccade size and implications for the site of plasticity.
    Scudder CA; Batourina EY; Tunder GS
    J Neurophysiol; 1998 Feb; 79(2):704-15. PubMed ID: 9463434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation.
    Robinson FR; Straube A; Fuchs AF
    J Neurophysiol; 1993 Nov; 70(5):1741-58. PubMed ID: 8294950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of signals that determine the amplitude and direction of saccadic eye movements in monkeys.
    McKenzie A; Lisberger SG
    J Neurophysiol; 1986 Jul; 56(1):196-207. PubMed ID: 3746396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.