These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 12445824)
1. Human Na+ -coupled citrate transporter: primary structure, genomic organization, and transport function. Inoue K; Zhuang L; Ganapathy V Biochem Biophys Res Commun; 2002 Dec; 299(3):465-71. PubMed ID: 12445824 [TBL] [Abstract][Full Text] [Related]
2. Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates. Inoue K; Fei YJ; Zhuang L; Gopal E; Miyauchi S; Ganapathy V Biochem J; 2004 Mar; 378(Pt 3):949-57. PubMed ID: 14656221 [TBL] [Abstract][Full Text] [Related]
3. Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain. Inoue K; Zhuang L; Maddox DM; Smith SB; Ganapathy V J Biol Chem; 2002 Oct; 277(42):39469-76. PubMed ID: 12177002 [TBL] [Abstract][Full Text] [Related]
4. Human sodium-coupled citrate transporter, the orthologue of Drosophila Indy, as a novel target for lithium action. Inoue K; Zhuang L; Maddox DM; Smith SB; Ganapathy V Biochem J; 2003 Aug; 374(Pt 1):21-6. PubMed ID: 12826022 [TBL] [Abstract][Full Text] [Related]
6. Expression and functional features of NaCT, a sodium-coupled citrate transporter, in human and rat livers and cell lines. Gopal E; Miyauchi S; Martin PM; Ananth S; Srinivas SR; Smith SB; Prasad PD; Ganapathy V Am J Physiol Gastrointest Liver Physiol; 2007 Jan; 292(1):G402-8. PubMed ID: 16973915 [TBL] [Abstract][Full Text] [Related]
7. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons. Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379 [TBL] [Abstract][Full Text] [Related]
8. Relevance of NAC-2, an Na+-coupled citrate transporter, to life span, body size and fat content in Caenorhabditis elegans. Fei YJ; Liu JC; Inoue K; Zhuang L; Miyake K; Miyauchi S; Ganapathy V Biochem J; 2004 Apr; 379(Pt 1):191-8. PubMed ID: 14678010 [TBL] [Abstract][Full Text] [Related]
9. Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5). Huard K; Brown J; Jones JC; Cabral S; Futatsugi K; Gorgoglione M; Lanba A; Vera NB; Zhu Y; Yan Q; Zhou Y; Vernochet C; Riccardi K; Wolford A; Pirman D; Niosi M; Aspnes G; Herr M; Genung NE; Magee TV; Uccello DP; Loria P; Di L; Gosset JR; Hepworth D; Rolph T; Pfefferkorn JA; Erion DM Sci Rep; 2015 Dec; 5():17391. PubMed ID: 26620127 [TBL] [Abstract][Full Text] [Related]
10. Functional analysis of a species-specific inhibitor selective for human Na+-coupled citrate transporter (NaCT/SLC13A5/mINDY). Higuchi K; Kopel JJ; Sivaprakasam S; Jaramillo-Martinez V; Sutton RB; Urbatsch IL; Ganapathy V Biochem J; 2020 Nov; 477(21):4149-4165. PubMed ID: 33079129 [TBL] [Abstract][Full Text] [Related]
11. Functional characterization of Na+ -coupled citrate transporter NaC2/NaCT expressed in primary cultures of neurons from mouse cerebral cortex. Wada M; Shimada A; Fujita T Brain Res; 2006 Apr; 1081(1):92-100. PubMed ID: 16516867 [TBL] [Abstract][Full Text] [Related]
12. Analysis of naturally occurring mutations in the human uptake transporter NaCT important for bone and brain development and energy metabolism. Selch S; Chafai A; Sticht H; Birkenfeld AL; Fromm MF; König J Sci Rep; 2018 Jul; 8(1):11330. PubMed ID: 30054523 [TBL] [Abstract][Full Text] [Related]
13. Structure and inhibition mechanism of the human citrate transporter NaCT. Sauer DB; Song J; Wang B; Hilton JK; Karpowich NK; Mindell JA; Rice WJ; Wang DN Nature; 2021 Mar; 591(7848):157-161. PubMed ID: 33597751 [TBL] [Abstract][Full Text] [Related]
14. Role of sodium dependent SLC13 transporter inhibitors in various metabolic disorders. Akhtar MJ; Khan SA; Kumar B; Chawla P; Bhatia R; Singh K Mol Cell Biochem; 2023 Aug; 478(8):1669-1687. PubMed ID: 36495372 [TBL] [Abstract][Full Text] [Related]
15. Electrophysiological characterization of human and mouse sodium-dependent citrate transporters (NaCT/SLC13A5) reveal species differences with respect to substrate sensitivity and cation dependence. Zwart R; Peeva PM; Rong JX; Sher E J Pharmacol Exp Ther; 2015 Nov; 355(2):247-54. PubMed ID: 26324167 [TBL] [Abstract][Full Text] [Related]
16. Species-specific influence of lithium on the activity of SLC13A5 (NaCT): lithium-induced activation is specific for the transporter in primates. Gopal E; Babu E; Ramachandran S; Bhutia YD; Prasad PD; Ganapathy V J Pharmacol Exp Ther; 2015 Apr; 353(1):17-26. PubMed ID: 25617245 [TBL] [Abstract][Full Text] [Related]
17. Threonine-509 is a determinant of apparent affinity for both substrate and cations in the human Na+/dicarboxylate cotransporter. Weerachayaphorn J; Pajor AM Biochemistry; 2008 Jan; 47(3):1087-93. PubMed ID: 18161988 [TBL] [Abstract][Full Text] [Related]
18. Identification of transport pathways for citric acid cycle intermediates in the human colon carcinoma cell line, Caco-2. Weerachayaphorn J; Pajor AM Biochim Biophys Acta; 2008 Apr; 1778(4):1051-9. PubMed ID: 18194662 [TBL] [Abstract][Full Text] [Related]
19. Model-Based Assessment of Plasma Citrate Flux Into the Liver: Implications for NaCT as a Therapeutic Target. Li Z; Erion DM; Maurer TS CPT Pharmacometrics Syst Pharmacol; 2016 Mar; 5(3):132-9. PubMed ID: 27069776 [TBL] [Abstract][Full Text] [Related]
20. Consequences of NaCT/SLC13A5/mINDY deficiency: good versus evil, separated only by the blood-brain barrier. Kopel JJ; Bhutia YD; Sivaprakasam S; Ganapathy V Biochem J; 2021 Feb; 478(3):463-486. PubMed ID: 33544126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]