BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 12445912)

  • 1. Importance of astrocytic inactivation of synaptically released glutamate for cell survival in the central nervous system--are astrocytes vulnerable to low intracellular glutamate concentrations?
    Had-Aissouni L; Ré DB; Nieoullon A; Kerkerian-Le Goff L
    J Physiol Paris; 2002; 96(3-4):317-22. PubMed ID: 12445912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate transport alteration triggers differentiation-state selective oxidative death of cultured astrocytes: a mechanism different from excitotoxicity depending on intracellular GSH contents.
    Ré DB; Boucraut J; Samuel D; Birman S; Kerkerian-Le Goff L; Had-Aissouni L
    J Neurochem; 2003 Jun; 85(5):1159-70. PubMed ID: 12753075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation.
    Diamond JS; Jahr CE
    J Neurophysiol; 2000 May; 83(5):2835-43. PubMed ID: 10805681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in neuronal survival.
    Håberg A; Qu H; Saether O; Unsgård G; Haraldseth O; Sonnewald U
    J Cereb Blood Flow Metab; 2001 Dec; 21(12):1451-63. PubMed ID: 11740207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cerebral oxidative stress: are astrocytes vulnerable to low intracellular glutamate concentrations? Consequences for neuronal viability].
    Ré DB; Nafia I; Nieoullon A; Kerkerian Le Goff L; Had-Aissouni L
    Ann Fr Anesth Reanim; 2005 May; 24(5):502-9. PubMed ID: 15885966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astrocytic control of glutamatergic activity: astrocytes as stars of the show.
    Hertz L; Zielke HR
    Trends Neurosci; 2004 Dec; 27(12):735-43. PubMed ID: 15541514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of synaptic transmission by astrocytes in the rat supraoptic nucleus.
    Piet R; Poulain DA; Oliet SH
    J Physiol Paris; 2002; 96(3-4):231-6. PubMed ID: 12445900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Astrocyte glutamate transport: review of properties, regulation, and physiological functions.
    Anderson CM; Swanson RA
    Glia; 2000 Oct; 32(1):1-14. PubMed ID: 10975906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate leakage from a compartmentalized intracellular metabolic pool and activation of the lipoxygenase pathway mediate oxidative astrocyte death by reversed glutamate transport.
    Re DB; Nafia I; Melon C; Shimamoto K; Kerkerian-Le Goff L; Had-Aissouni L
    Glia; 2006 Jul; 54(1):47-57. PubMed ID: 16673373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices.
    Araque A; Martín ED; Perea G; Arellano JI; Buño W
    J Neurosci; 2002 Apr; 22(7):2443-50. PubMed ID: 11923408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death.
    Blanc EM; Bruce-Keller AJ; Mattson MP
    J Neurochem; 1998 Mar; 70(3):958-70. PubMed ID: 9489715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity.
    Bonansco C; Couve A; Perea G; Ferradas CÁ; Roncagliolo M; Fuenzalida M
    Eur J Neurosci; 2011 Apr; 33(8):1483-92. PubMed ID: 21395864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond the role of glutamate as a neurotransmitter.
    Nedergaard M; Takano T; Hansen AJ
    Nat Rev Neurosci; 2002 Sep; 3(9):748-55. PubMed ID: 12209123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and cellular physiology of sodium-dependent glutamate transporters.
    Rose CR; Ziemens D; Untiet V; Fahlke C
    Brain Res Bull; 2018 Jan; 136():3-16. PubMed ID: 28040508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The active role of astrocytes in synaptic transmission.
    Vesce S; Bezzi P; Volterra A
    Cell Mol Life Sci; 1999 Dec; 56(11-12):991-1000. PubMed ID: 11212330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Astroglial plasticity and glutamate function in a chronic mouse model of Parkinson's disease.
    Dervan AG; Meshul CK; Beales M; McBean GJ; Moore C; Totterdell S; Snyder AK; Meredith GE
    Exp Neurol; 2004 Nov; 190(1):145-56. PubMed ID: 15473988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A glutamatergic component of lead toxicity in adult brain: the role of astrocytic glutamate transporters.
    Struzyńska L
    Neurochem Int; 2009; 55(1-3):151-6. PubMed ID: 19428820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prion protein regulates glutathione metabolism and neural glutamate and cysteine uptake via excitatory amino acid transporter 3.
    Guitart K; Loers G; Schachner M; Kleene R
    J Neurochem; 2015 May; 133(4):558-71. PubMed ID: 25692227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurointegrity and neurophysiology: astrocyte, glutamate, and carbon monoxide interactions.
    Mahan VL
    Med Gas Res; 2019; 9(1):24-45. PubMed ID: 30950417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyroid hormone increases astrocytic glutamate uptake and protects astrocytes and neurons against glutamate toxicity.
    Mendes-de-Aguiar CB; Alchini R; Decker H; Alvarez-Silva M; Tasca CI; Trentin AG
    J Neurosci Res; 2008 Nov; 86(14):3117-25. PubMed ID: 18543341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.