BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 12445912)

  • 41. Morphological evidence for vesicular glutamate release from astrocytes.
    Bergersen LH; Gundersen V
    Neuroscience; 2009 Jan; 158(1):260-5. PubMed ID: 18479831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Local energy on demand: Are 'spontaneous' astrocytic Ca
    Oheim M; Schmidt E; Hirrlinger J
    Brain Res Bull; 2018 Jan; 136():54-64. PubMed ID: 28450076
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of lactate in brain metabolism.
    Fillenz M
    Neurochem Int; 2005 Nov; 47(6):413-7. PubMed ID: 16039756
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Astrocytic glutamate transporter-dependent neuroprotection against glutamate toxicity: an in vitro study of maslinic acid.
    Qian Y; Guan T; Tang X; Huang L; Huang M; Li Y; Sun H; Yu R; Zhang F
    Eur J Pharmacol; 2011 Jan; 651(1-3):59-65. PubMed ID: 21118675
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neurons depend on astrocytes in a coculture system for protection from glutamate toxicity.
    Brown DR
    Mol Cell Neurosci; 1999 May; 13(5):379-89. PubMed ID: 10356299
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NMDA Receptors in glia.
    Verkhratsky A; Kirchhoff F
    Neuroscientist; 2007 Feb; 13(1):28-37. PubMed ID: 17229973
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective blockade of astrocytic glutamate transporter GLT-1 with dihydrokainate prevents neuronal death during ouabain treatment of astrocyte/neuron cocultures.
    Kawahara K; Hosoya R; Sato H; Tanaka M; Nakajima T; Iwabuchi S
    Glia; 2002 Dec; 40(3):337-49. PubMed ID: 12420313
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The consequences of methylmercury exposure on interactive functions between astrocytes and neurons.
    Allen JW; Shanker G; Tan KH; Aschner M
    Neurotoxicology; 2002 Dec; 23(6):755-9. PubMed ID: 12520765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pharmacology and toxicology of astrocyte-neuron glutamate transport and cycling.
    Sonnewald U; Qu H; Aschner M
    J Pharmacol Exp Ther; 2002 Apr; 301(1):1-6. PubMed ID: 11907150
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release.
    Mahmoud S; Gharagozloo M; Simard C; Gris D
    Cells; 2019 Feb; 8(2):. PubMed ID: 30791579
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neural precursor-derived astrocytes of wobbler mice induce apoptotic death of motor neurons through reduced glutamate uptake.
    Diana V; Ottolina A; Botti F; Fumagalli E; Calcagno E; De Paola M; Cagnotto A; Invernici G; Parati E; Curti D; Mennini T
    Exp Neurol; 2010 Sep; 225(1):163-72. PubMed ID: 20558160
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional Indicators of Glutamate Transport in Single Striatal Astrocytes and the Influence of Kir4.1 in Normal and Huntington Mice.
    Dvorzhak A; Vagner T; Kirmse K; Grantyn R
    J Neurosci; 2016 May; 36(18):4959-75. PubMed ID: 27147650
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The dual face of connexin-based astroglial Ca(2+) communication: a key player in brain physiology and a prime target in pathology.
    De Bock M; Decrock E; Wang N; Bol M; Vinken M; Bultynck G; Leybaert L
    Biochim Biophys Acta; 2014 Oct; 1843(10):2211-32. PubMed ID: 24768716
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades.
    Matos M; Augusto E; Oliveira CR; Agostinho P
    Neuroscience; 2008 Oct; 156(4):898-910. PubMed ID: 18790019
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatio-temporal spread of neuronal death after focal photolysis of caged glutamate in neuron/astrocyte co-cultures.
    Iwabuchi S; Watanabe T; Kawahara K
    Neurochem Int; 2013 Jun; 62(7):1020-7. PubMed ID: 23538265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype.
    Garg SK; Banerjee R; Kipnis J
    J Immunol; 2008 Mar; 180(6):3866-73. PubMed ID: 18322194
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Induction of Nrf2 and xCT are involved in the action of the neuroprotective antibiotic ceftriaxone in vitro.
    Lewerenz J; Albrecht P; Tien ML; Henke N; Karumbayaram S; Kornblum HI; Wiedau-Pazos M; Schubert D; Maher P; Methner A
    J Neurochem; 2009 Oct; 111(2):332-43. PubMed ID: 19694903
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glutamate transporters bring competition to the synapse.
    Huang YH; Bergles DE
    Curr Opin Neurobiol; 2004 Jun; 14(3):346-52. PubMed ID: 15194115
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus.
    Bergles DE; Jahr CE
    J Neurosci; 1998 Oct; 18(19):7709-16. PubMed ID: 9742141
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism.
    Chen Y; Vartiainen NE; Ying W; Chan PH; Koistinaho J; Swanson RA
    J Neurochem; 2001 Jun; 77(6):1601-10. PubMed ID: 11413243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.