These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 12445974)

  • 1. Nonlinear cortical modulation of muscle fatigue: a functional MRI study.
    Liu JZ; Dai TH; Sahgal V; Brown RW; Yue GH
    Brain Res; 2002 Dec; 957(2):320-9. PubMed ID: 12445974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between muscle output and functional MRI-measured brain activation.
    Dai TH; Liu JZ; Sahgal V; Brown RW; Yue GH
    Exp Brain Res; 2001 Oct; 140(3):290-300. PubMed ID: 11681304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: an FMRI study.
    Liu JZ; Shan ZY; Zhang LD; Sahgal V; Brown RW; Yue GH
    J Neurophysiol; 2003 Jul; 90(1):300-12. PubMed ID: 12634278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue induced by intermittent maximal voluntary contractions is associated with significant losses in muscle output but limited reductions in functional MRI-measured brain activation level.
    Liu JZ; Zhang L; Yao B; Sahgal V; Yue GH
    Brain Res; 2005 Apr; 1040(1-2):44-54. PubMed ID: 15804425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dynamic network involving M1-S1, SII-insular, medial insular, and cingulate cortices controls muscular activity during an isometric contraction reaction time task.
    Jouanin JC; Pérès M; Ducorps A; Renault B
    Hum Brain Mapp; 2009 Feb; 30(2):675-88. PubMed ID: 18266218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced functional activation after fatiguing exercise is not confined to primary motor areas.
    Benwell NM; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2006 Nov; 175(4):575-83. PubMed ID: 16819648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the functional MR signal in motor and non-motor areas during intermittent fatiguing hand exercise.
    Benwell NM; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2007 Sep; 182(1):93-7. PubMed ID: 17549462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue?
    Benwell NM; Sacco P; Hammond GR; Byrnes ML; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2006 Apr; 170(2):191-8. PubMed ID: 16328285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hand sensory-motor cortical network assessed by functional source separation.
    Porcaro C; Barbati G; Zappasodi F; Rossini PM; Tecchio F
    Hum Brain Mapp; 2008 Jan; 29(1):70-81. PubMed ID: 17318837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movement-related cortical potentials during muscle fatigue induced by upper limb submaximal isometric contractions.
    Guo F; Wang JY; Sun YJ; Yang AL; Zhang RH
    Neuroreport; 2014 Oct; 25(14):1136-43. PubMed ID: 25089802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voluntary activation and cortical activity during a sustained maximal contraction: an fMRI study.
    Post M; Steens A; Renken R; Maurits NM; Zijdewind I
    Hum Brain Mapp; 2009 Mar; 30(3):1014-27. PubMed ID: 18412114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical short-term fatigue effects assessed via rhythmic brain-muscle coherence.
    Tecchio F; Porcaro C; Zappasodi F; Pesenti A; Ercolani M; Rossini PM
    Exp Brain Res; 2006 Sep; 174(1):144-51. PubMed ID: 16604318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral correlates of the "Kohnstamm phenomenon": an fMRI study.
    Duclos C; Roll R; Kavounoudias A; Roll JP
    Neuroimage; 2007 Jan; 34(2):774-83. PubMed ID: 17095251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of brain activation after sustained non-fatiguing and fatiguing muscle contraction: a positron emission tomography study.
    Korotkov A; Radovanovic S; Ljubisavljevic M; Lyskov E; Kataeva G; Roudas M; Pakhomov S; Thunberg J; Medvedev S; Johansson H
    Exp Brain Res; 2005 May; 163(1):65-74. PubMed ID: 15645226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal brain dynamics in response to muscle stimulation.
    Niddam DM; Chen LF; Wu YT; Hsieh JC
    Neuroimage; 2005 Apr; 25(3):942-51. PubMed ID: 15808994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling.
    Siemionow V; Sahgal V; Yue GH
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):97-106. PubMed ID: 20371421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in presumed motor cortical activity during fatiguing muscle contraction in humans.
    Seifert T; Petersen NC
    Acta Physiol (Oxf); 2010 Jul; 199(3):317-26. PubMed ID: 20136794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the modulation of brain activity associated with handgrip force and fatigue.
    Cao L; Hao D; Rong Y; Zhou Y; Li M; Tian Y
    Technol Health Care; 2015; 23 Suppl 2():S427-33. PubMed ID: 26410509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different cortical activation patterns during voluntary eccentric and concentric muscle contractions: an fMRI study.
    Kwon YH; Park JW
    NeuroRehabilitation; 2011; 29(3):253-9. PubMed ID: 22142759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical motor output decreases after neuromuscular fatigue induced by electrical stimulation of the plantar flexor muscles.
    Alexandre F; Derosiere G; Papaiordanidou M; Billot M; Varray A
    Acta Physiol (Oxf); 2015 May; 214(1):124-34. PubMed ID: 25740017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.