BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 12446070)

  • 1. Assessment of coronary artery bypass graft disease using cardiovascular magnetic resonance determination of flow reserve.
    Bedaux WL; Hofman MB; Vyt SL; Bronzwaer JG; Visser CA; van Rossum AC
    J Am Coll Cardiol; 2002 Nov; 40(10):1848-55. PubMed ID: 12446070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional significance of stenoses in coronary artery bypass grafts. Evaluation by single-photon emission computed tomography perfusion imaging, cardiovascular magnetic resonance, and angiography.
    Salm LP; Bax JJ; Vliegen HW; Langerak SE; Dibbets P; Jukema JW; Lamb HJ; Pauwels EK; de Roos A; van der Wall EE
    J Am Coll Cardiol; 2004 Nov; 44(9):1877-82. PubMed ID: 15519022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractional flow reserve-guided coronary artery bypass grafting: can intraoperative physiologic imaging guide decision making?
    Ferguson TB; Chen C; Babb JD; Efird JT; Daggubati R; Cahill JM
    J Thorac Cardiovasc Surg; 2013 Oct; 146(4):824-835.e1. PubMed ID: 23915918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of saphenous vein coronary artery bypass graft flow by cardiovascular magnetic resonance.
    Salm LP; Vliegen HW; Langerak SE; Bax JJ; Jukema JW; Lamb HJ; de Roos A; van der Wall EE; Zwinderman AH
    J Cardiovasc Magn Reson; 2005; 7(4):631-7. PubMed ID: 16136852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progression from stenosis to occlusion in the proximal native coronary artery after coronary artery bypass grafting.
    Tanaka A; Ishii H; Oshima H; Shibata Y; Tatami Y; Osugi N; Ota T; Kawamura Y; Suzuki S; Usui A; Murohara T
    Heart Vessels; 2016 Jul; 31(7):1056-60. PubMed ID: 26174429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [MR angiography and determination of the flow reserve after minimal invasive direct coronary artery bypass (MIDCAB) surgery of the left internal mammary artery in comparison to multirow CT].
    Stauder NI; Stauder H; Fenchel M; Küttner A; Kramer U; Scheule AM; Claussen CD; Miller S
    Rofo; 2005 Aug; 177(8):1094-102. PubMed ID: 16021541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries.
    Langerak SE; Vliegen HW; Jukema JW; Kunz P; Zwinderman AH; Lamb HJ; van der Wall EE; de Roos A
    Circulation; 2003 Mar; 107(11):1502-8. PubMed ID: 12654607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of internal mammary artery and saphenous vein graft patency and flow reserve using transthoracic Doppler echocardiography.
    Chirillo F; Bruni A; Balestra G; Cavallini C; Olivari Z; Thomas JD; Stritoni P
    Heart; 2001 Oct; 86(4):424-31. PubMed ID: 11559684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined assessment of myocardial perfusion and late gadolinium enhancement in patients after percutaneous coronary intervention or bypass grafts: a multicenter study of an integrated cardiovascular magnetic resonance protocol.
    Bernhardt P; Spiess J; Levenson B; Pilz G; Höfling B; Hombach V; Strohm O
    JACC Cardiovasc Imaging; 2009 Nov; 2(11):1292-300. PubMed ID: 19909933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular adaptation of the internal thoracic artery graft early and late after bypass surgery.
    Walpoth BH; Schmid M; Schwab A; Bosshard A; Eckstein F; Carrel T; Hess OM
    J Thorac Cardiovasc Surg; 2008 Oct; 136(4):876-83. PubMed ID: 18954625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current mechanisms of low graft flow and conduit choice for the right coronary artery based on the severity of native coronary stenosis and myocardial flow demand.
    Nakajima H; Takazawa A; Yoshitake A; Tokunaga C; Tochii M; Hayashi J; Izumida H; Kaneyuki D; Asakura T; Iguchi A
    Gen Thorac Cardiovasc Surg; 2019 Aug; 67(8):655-660. PubMed ID: 30737658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic evaluation of saphenous vein coronary artery bypass grafts: relative merits of Doppler flow velocity and SPECT perfusion imaging.
    Salm LP; Bax JJ; Jukema JW; Langerak SE; Vliegen HW; Steendijk P; Lamb HJ; de Roos A; van der Wall EE
    J Nucl Cardiol; 2005; 12(5):545-52. PubMed ID: 16171714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive value of magnetic resonance coronary angiography in a comprehensive cardiac magnetic resonance stress-rest protocol for detection of functionally significant coronary artery disease: a pilot study.
    Bettencourt N; Ferreira N; Chiribiri A; Schuster A; Sampaio F; Santos L; Melica B; Rodrigues A; Braga P; Teixeira M; Leite-Moreira A; Silva-Cardoso J; Portugal P; Gama V; Nagel E
    Circ Cardiovasc Imaging; 2013 Sep; 6(5):730-8. PubMed ID: 23833284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow capacity of internal mammary artery grafts: early restriction and later improvement assessed by Doppler guide wire. Comparison with saphenous vein grafts.
    Akasaka T; Yoshikawa J; Yoshida K; Maeda K; Hozumi T; Nasu M; Shomura T
    J Am Coll Cardiol; 1995 Mar; 25(3):640-7. PubMed ID: 7860908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of vein graft disease using high-resolution magnetic resonance angiography.
    Langerak SE; Vliegen HW; de Roos A; Zwinderman AH; Jukema JW; Kunz P; Lamb HJ; van Der Wall EE
    Circulation; 2002 Jan; 105(3):328-33. PubMed ID: 11804988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts. An angiographically controlled study.
    Galjee MA; van Rossum AC; Doesburg T; van Eenige MJ; Visser CA
    Circulation; 1996 Feb; 93(4):660-6. PubMed ID: 8640993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximal blood flow acceleration analysis in the early diastolic phase for in situ internal thoracic artery bypass grafts: a new transit-time flow measurement predictor of graft failure following coronary artery bypass grafting.
    Handa T; Orihashi K; Nishimori H; Fukutomi T; Yamamoto M; Kondo N; Tashiro M
    Interact Cardiovasc Thorac Surg; 2015 Apr; 20(4):449-57. PubMed ID: 25574034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance adenosine perfusion imaging in patients after coronary artery bypass graft surgery.
    Klein C; Nagel E; Gebker R; Kelle S; Schnackenburg B; Graf K; Dreysse S; Fleck E
    JACC Cardiovasc Imaging; 2009 Apr; 2(4):437-45. PubMed ID: 19580726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of minimally invasive direct coronary artery bypass grafting of the left internal thoracic artery by means of magnetic resonance imaging.
    Stauder NI; Fenchel M; Stauder H; Küttner A; Scheule AM; Kramer U; Claussen CD; Miller S
    J Thorac Cardiovasc Surg; 2005 Mar; 129(3):607-14. PubMed ID: 15746745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnostic accuracy of computed tomography angiography in patients after bypass grafting: comparison with invasive coronary angiography.
    Weustink AC; Nieman K; Pugliese F; Mollet NR; Meijboom WB; van Mieghem C; ten Kate GJ; Cademartiri F; Krestin GP; de Feyter PJ
    JACC Cardiovasc Imaging; 2009 Jul; 2(7):816-24. PubMed ID: 19608130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.