BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12446128)

  • 1. Alzheimer's and prion diseases: distinct pathologies, common proteolytic denominators.
    Checler F; Vincent B
    Trends Neurosci; 2002 Dec; 25(12):616-20. PubMed ID: 12446128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of betaAPP and PrPc cleavage by alpha-secretase: mechanistic and therapeutic perspectives.
    Vincent B; Cisse MA; Sunyach C; Guillot-Sestier MV; Checler F
    Curr Alzheimer Res; 2008 Apr; 5(2):202-11. PubMed ID: 18393805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADAM proteases: protective role in Alzheimer's and prion diseases?
    Vincent B
    Curr Alzheimer Res; 2004 Aug; 1(3):165-74. PubMed ID: 15975064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The P's and Q's of cellular PrP-Aβ interactions.
    Westaway D; Jhamandas JH
    Prion; 2012; 6(4):359-63. PubMed ID: 22874673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Games played by rogue proteins in prion disorders and Alzheimer's disease.
    Aguzzi A; Haass C
    Science; 2003 Oct; 302(5646):814-8. PubMed ID: 14593165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of endoproteolytic α-cleavage and shedding of the prion protein in neurodegeneration.
    Altmeppen HC; Prox J; Puig B; Dohler F; Falker C; Krasemann S; Glatzel M
    FEBS J; 2013 Sep; 280(18):4338-47. PubMed ID: 23413979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Taking advantage of physiological proteolytic processing of the prion protein for a therapeutic perspective in prion and Alzheimer diseases.
    Béland M; Roucou X
    Prion; 2014; 8(1):106-10. PubMed ID: 24335160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High molecular mass assemblies of amyloid-β oligomers bind prion protein in patients with Alzheimer's disease.
    Dohler F; Sepulveda-Falla D; Krasemann S; Altmeppen H; Schlüter H; Hildebrand D; Zerr I; Matschke J; Glatzel M
    Brain; 2014 Mar; 137(Pt 3):873-86. PubMed ID: 24519981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbiome Influence in the Pathogenesis of Prion and Alzheimer's Diseases.
    D'Argenio V; Sarnataro D
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31547531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding the function of the N-terminal tail of the cellular prion protein to inspire novel therapeutic avenues for neurodegenerative diseases.
    Iraci N; Stincardini C; Barreca ML; Biasini E
    Virus Res; 2015 Sep; 207():62-8. PubMed ID: 25456402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenic mechanisms of prion protein, amyloid-β and α-synuclein misfolding: the prion concept and neurotoxicity of protein oligomers.
    Ugalde CL; Finkelstein DI; Lawson VA; Hill AF
    J Neurochem; 2016 Oct; 139(2):162-180. PubMed ID: 27529376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein.
    Hooper NM
    Biochem Soc Trans; 2005 Apr; 33(Pt 2):335-8. PubMed ID: 15787600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolving views in prion glycosylation: functional and pathological implications.
    Ermonval M; Mouillet-Richard S; Codogno P; Kellermann O; Botti J
    Biochimie; 2003; 85(1-2):33-45. PubMed ID: 12765773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of Peptide Aptamers with Prion Protein Central Domain Promotes α-Cleavage of PrP
    Corda E; Du X; Shim SY; Klein AN; Siltberg-Liberles J; Gilch S
    Mol Neurobiol; 2018 Oct; 55(10):7758-7774. PubMed ID: 29460268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined pharmacological, mutational and cell biology approaches indicate that p53-dependent caspase 3 activation triggered by cellular prion is dependent on its endocytosis.
    Sunyach C; Checler F
    J Neurochem; 2005 Mar; 92(6):1399-407. PubMed ID: 15748158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sialylated glycosylphosphatidylinositols suppress the production of toxic amyloid-β oligomers.
    Nolan W; McHale-Owen H; Bate C
    Biochem J; 2017 Aug; 474(17):3045-3058. PubMed ID: 28729427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aβ induces its own prion protein N-terminal fragment (PrPN1)-mediated neutralization in amorphous aggregates.
    Béland M; Bédard M; Tremblay G; Lavigne P; Roucou X
    Neurobiol Aging; 2014 Jul; 35(7):1537-48. PubMed ID: 24602510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sheddase ADAM10 is a potent modulator of prion disease.
    Altmeppen HC; Prox J; Krasemann S; Puig B; Kruszewski K; Dohler F; Bernreuther C; Hoxha A; Linsenmeier L; Sikorska B; Liberski PP; Bartsch U; Saftig P; Glatzel M
    Elife; 2015 Feb; 4():. PubMed ID: 25654651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delineating common molecular mechanisms in Alzheimer's and prion diseases.
    Barnham KJ; Cappai R; Beyreuther K; Masters CL; Hill AF
    Trends Biochem Sci; 2006 Aug; 31(8):465-72. PubMed ID: 16820299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.