BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12446167)

  • 1. Effect of hamstrings muscle action on stability of the ACL-deficient knee in isokinetic extension exercise.
    Yanagawa T; Shelburne K; Serpas F; Pandy M
    Clin Biomech (Bristol, Avon); 2002; 17(9-10):705-12. PubMed ID: 12446167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A clinically applicable EMG-force model to quantify active stabilization of the knee after a lesion of the anterior cruciate ligament.
    Doorenbosch CA; Harlaar J
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):142-9. PubMed ID: 12550813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forward-dynamics simulation of anterior cruciate ligament forces developed during isokinetic dynamometry.
    Serpas F; Yanagawa T; Pandy M
    Comput Methods Biomech Biomed Engin; 2002 Feb; 5(1):33-43. PubMed ID: 12186732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of anthropometric and mechanical variations on functional instability in the ACL-deficient knee.
    Liu W; Maitland ME
    Ann Biomed Eng; 2003 Nov; 31(10):1153-61. PubMed ID: 14649489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of clinical and dynamic knee function in patients with anterior cruciate ligament deficiency.
    Patel RR; Hurwitz DE; Bush-Joseph CA; Bach BR; Andriacchi TP
    Am J Sports Med; 2003; 31(1):68-74. PubMed ID: 12531760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anterior positioning of tibia during motion after anterior cruciate ligament injury.
    Kvist J; Gillquist J
    Med Sci Sports Exerc; 2001 Jul; 33(7):1063-72. PubMed ID: 11445751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limited benefit of hamstrings forces for the anterior cruciate ligament-deficient knee: an in vitro study.
    Elias JJ; Kirkpatrick MS; Stonestreet MJ; Shah KS; Frampton CE; Morscher MA; Jones KC
    Proc Inst Mech Eng H; 2012 Oct; 226(10):752-8. PubMed ID: 23157076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cruciate ligament forces in the human knee during rehabilitation exercises.
    Toutoungi DE; Lu TW; Leardini A; Catani F; O'Connor JJ
    Clin Biomech (Bristol, Avon); 2000 Mar; 15(3):176-87. PubMed ID: 10656979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonist muscle moment is increased in ACL deficient subjects during maximal dynamic knee extension.
    Alkjær T; Simonsen EB; Magnusson SP; Dyhre-Poulsen P; Aagaard P
    Knee; 2012 Oct; 19(5):633-9. PubMed ID: 22284964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in knee motion pattern after anterior cruciate ligament injury - case report.
    Kvist J; Good L; Tagesson S
    Clin Biomech (Bristol, Avon); 2007 Jun; 22(5):551-6. PubMed ID: 17321020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament-deficient knee.
    Shybut TB; Vega CE; Haddad J; Alexander JW; Gold JE; Noble PC; Lowe WR
    Am J Sports Med; 2015 Apr; 43(4):905-11. PubMed ID: 25589386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Associations of isokinetic and isotonic knee strength with knee function and activity level after anterior cruciate ligament reconstruction: a prospective cohort study.
    Pua YH; Ho JY; Chan SA; Khoo SJ; Chong HC
    Knee; 2017 Oct; 24(5):1067-1074. PubMed ID: 28739425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modeling study of partial ACL injury: simulated KT-2000 arthrometer tests.
    Liu W; Maitland ME; Bell GD
    J Biomech Eng; 2002 Jun; 124(3):294-301. PubMed ID: 12071264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anterior tibial translation during different isokinetic quadriceps torque in anterior cruciate ligament deficient and nonimpaired individuals.
    Kvist J; Karlberg C; Gerdle B; Gillquist J
    J Orthop Sports Phys Ther; 2001 Jan; 31(1):4-15. PubMed ID: 11204794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: a three-dimensional computational simulation.
    Li G; Suggs J; Gill T
    Ann Biomed Eng; 2002 May; 30(5):713-20. PubMed ID: 12108845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL.
    Li G; Rudy TW; Sakane M; Kanamori A; Ma CB; Woo SL
    J Biomech; 1999 Apr; 32(4):395-400. PubMed ID: 10213029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of thigh muscle activity on anterior knee laxity in the uninjured and anterior cruciate ligament-injured knee.
    Barcellona MG; Morrissey MC; Milligan P; Amis AA
    Knee Surg Sports Traumatol Arthrosc; 2014 Nov; 22(11):2821-9. PubMed ID: 24114352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of ligament loading and anterior tibial translation in healthy and ACL-deficient knees during gait and the influence of increasing tibial slope using EMG-driven approach.
    Shao Q; MacLeod TD; Manal K; Buchanan TS
    Ann Biomed Eng; 2011 Jan; 39(1):110-21. PubMed ID: 20683675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
    Shelburne KB; Pandy MG
    J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of neuromuscular control related to motion in the acutely ACL-injured knee: an experimental study.
    Bonsfills N; Gómez-Barrena E; Raygoza JJ; Núñez A
    Eur J Appl Physiol; 2008 Oct; 104(3):567-77. PubMed ID: 18719937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.