These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 12446326)

  • 1. Coupled mean flow-amplitude equations for nearly inviscid parametrically driven surface waves.
    Knobloch E; Martel C; Vega JM
    Ann N Y Acad Sci; 2002 Oct; 974():201-19. PubMed ID: 12446326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapidly rotating cylinder flow with an oscillating sidewall.
    Lopez JM; Marques F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013013. PubMed ID: 24580326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boundary streaming with Navier boundary condition.
    Xie JH; Vanneste J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063010. PubMed ID: 25019882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and particle transport in second-order stokes flow.
    Keanini RG
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6606-20. PubMed ID: 11088341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.
    Cheng L; Li Y; Grosh K
    J Comput Phys; 2013 Aug; 247():248-261. PubMed ID: 23729844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-dimensional models of the glottal flow incorporating viscous-inviscid interaction.
    Kaburagi T; Tanabe Y
    J Acoust Soc Am; 2009 Jan; 125(1):391-404. PubMed ID: 19173426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear driven solitary waves on a liquid film.
    Frank AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):065301. PubMed ID: 17280111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration-induced streaming flow near a sharp edge: Flow structure and instabilities in a large span of forcing amplitude.
    Zhong G; Liu Y; Guo X; Royon L; Brunet P
    Phys Rev E; 2023 Feb; 107(2-2):025102. PubMed ID: 36932544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic microbubble dynamics with viscous effects.
    Manmi K; Wang Q
    Ultrason Sonochem; 2017 May; 36():427-436. PubMed ID: 28069230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal harmonic response in a confined Bödewadt boundary layer flow.
    Do Y; Lopez JM; Marques F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036301. PubMed ID: 21230165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Existence of the passage to the limit of an inviscid fluid.
    Goldobin DS
    Eur Phys J E Soft Matter; 2017 Nov; 40(11):103. PubMed ID: 29178057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stokes drift.
    van den Bremer TS; Breivik Ø
    Philos Trans A Math Phys Eng Sci; 2018 Jan; 376(2111):. PubMed ID: 29229803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell.
    Livermore PW; Bailey LM; Hollerbach R
    Sci Rep; 2016 Mar; 6():22812. PubMed ID: 26980289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A one-dimensional viscous-inviscid strong interaction model for flow in indented channels with separation and reattachment.
    Kalse SG; Bijl H; van Oudheusden BW
    J Biomech Eng; 2003 Jun; 125(3):355-62. PubMed ID: 12929240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional lattice Boltzmann model for compressible flows.
    Sun C; Hsu AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marangoni flow traveling with reaction fronts: Eikonal approximation.
    Guzman R; Vasquez DA
    Chaos; 2017 Oct; 27(10):103121. PubMed ID: 29092421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersive hydrodynamics in viscous fluid conduits.
    Lowman NK; Hoefer MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023016. PubMed ID: 24032933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase relationship in laminar channel flow controlled by traveling-wave-like blowing or suction.
    Mamori H; Fukagata K; Hoepffner J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046304. PubMed ID: 20481824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenomenological model of weakly damped Faraday waves and the associated mean flow.
    Vega JM; Rüdiger S; Viñals J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046306. PubMed ID: 15600518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.