These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 12446336)
1. High heat flux cooling by microbubble emission boiling. Suzuki K; Saitoh H; Matsumoto K Ann N Y Acad Sci; 2002 Oct; 974():364-77. PubMed ID: 12446336 [TBL] [Abstract][Full Text] [Related]
2. Microgravity experiments on boiling and applications: research activity of advanced high heat flux cooling technology for electronic devices in Japan. Suzuki K; Kawamura H Ann N Y Acad Sci; 2004 Nov; 1027():182-95. PubMed ID: 15644356 [TBL] [Abstract][Full Text] [Related]
3. Origin and effect of thermocapillary convection in subcooled boiling: observations and conclusions from experiments performed at microgravity. Straub J Ann N Y Acad Sci; 2002 Oct; 974():348-63. PubMed ID: 12446335 [TBL] [Abstract][Full Text] [Related]
4. Local data of heat flux, wall temperature and the void phase along the boiling curve during vertical subcooled flow boiling of refrigerant Novec 649 at a copper wall. Bruder M; Sembach L; Krumova V; Sattelmayer T Data Brief; 2018 Dec; 21():1415-1429. PubMed ID: 30456266 [TBL] [Abstract][Full Text] [Related]
5. Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity. Merte H; Park J; Shultz WW; Keller RB Ann N Y Acad Sci; 2002 Oct; 974():481-503. PubMed ID: 12446343 [TBL] [Abstract][Full Text] [Related]
6. Orientation and related buoyancy effects in low-velocity flow boiling. Merte H; Schultz WW; Liu Q; Keller RB Ann N Y Acad Sci; 2009 Apr; 1161():202-10. PubMed ID: 19426318 [TBL] [Abstract][Full Text] [Related]
7. Quench cooling under reduced gravity. Chatain D; Mariette C; Nikolayev VS; Beysens D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013004. PubMed ID: 23944546 [TBL] [Abstract][Full Text] [Related]
8. A study of subcooled pool boiling of water: contact area of boiling bubbles with a heating surface during a heating process. Suzuki K; Takahashi S; Ohta H Ann N Y Acad Sci; 2004 Nov; 1027():259-68. PubMed ID: 15644360 [TBL] [Abstract][Full Text] [Related]
9. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes. Wang Q; Chen R Nano Lett; 2018 May; 18(5):3096-3103. PubMed ID: 29624394 [TBL] [Abstract][Full Text] [Related]
10. Effects of two-phase inlet quality, mass velocity, flow orientation, and heating perimeter on flow boiling in a rectangular channel: Part 1 - Two-phase flow and heat transfer results. Kharangate CR; O'Neill LE; Mudawar I Int J Heat Mass Transf; 2016 Dec; 103():1261-1279. PubMed ID: 30524139 [TBL] [Abstract][Full Text] [Related]
11. Some parameter boundaries governing microgravity pool boiling modes. Merte H Ann N Y Acad Sci; 2006 Sep; 1077():629-49. PubMed ID: 17124149 [TBL] [Abstract][Full Text] [Related]
12. Effects on rapid cooling of small samples in quenching. Cao Q; Hua TC Ann N Y Acad Sci; 1998 Sep; 858():262-9. PubMed ID: 9988670 [TBL] [Abstract][Full Text] [Related]
13. Development of high-performance cooling devices for space application by using flow boiling in narrow channels. Miura S; Inada Y; Shinmoto Y; Ohta H Ann N Y Acad Sci; 2009 Apr; 1161():192-201. PubMed ID: 19426317 [TBL] [Abstract][Full Text] [Related]
14. Momentum effects in steady nucleate pool boiling during microgravity. Merte H Ann N Y Acad Sci; 2004 Nov; 1027():196-216. PubMed ID: 15644357 [TBL] [Abstract][Full Text] [Related]
15. Micro-pin-finned Surfaces with Fractal Treelike Hydrophilic Networks for Flow Boiling Enhancement. Yuan B; Liu L; Cui C; Fang J; Zhang Y; Wei J ACS Appl Mater Interfaces; 2021 Oct; 13(40):48189-48195. PubMed ID: 34606238 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of steady-state nucleate pool boiling in microgravity. Lee HS Ann N Y Acad Sci; 2002 Oct; 974():447-62. PubMed ID: 12446341 [TBL] [Abstract][Full Text] [Related]
17. Transient Heat Transfer Characteristics in a Flat Plate Heat Sink with Mini-Channels for Cooling High Heat Flux IGBT. Chen C; Zhao H; Liu C; Chen J; Liu C; Zhang T; Gong W Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144040 [TBL] [Abstract][Full Text] [Related]
18. Development of a high-performance boiling heat exchanger by improved liquid supply to narrow channels. Ohta H; Ohno T; Hioki F; Shinmoto Y Ann N Y Acad Sci; 2004 Nov; 1027():217-34. PubMed ID: 15644358 [TBL] [Abstract][Full Text] [Related]
19. Heat transfer and bubble detachment in subcooled pool boiling from a downward-facing microheater array in a nonuniform electric field. Liu Z; Herman C; Kim J Ann N Y Acad Sci; 2009 Apr; 1161():182-91. PubMed ID: 19426316 [TBL] [Abstract][Full Text] [Related]
20. Liquid-Superspreading-Boosted High-Performance Jet-Flow Boiling for Enhancement of Phase-Change Cooling. Xu Z; Zhang P; Yu C; Miao W; Chang Q; Qiu M; Li Y; Tian Y; Jiang L Adv Mater; 2023 Jun; 35(26):e2210557. PubMed ID: 37023795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]