These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12446739)

  • 1. K-loop insertion restores microtubule depolymerizing activity of a "neckless" MCAK mutant.
    Ovechkina Y; Wagenbach M; Wordeman L
    J Cell Biol; 2002 Nov; 159(4):557-62. PubMed ID: 12446739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MCAK associates with the tips of polymerizing microtubules.
    Moore AT; Rankin KE; von Dassow G; Peris L; Wagenbach M; Ovechkina Y; Andrieux A; Job D; Wordeman L
    J Cell Biol; 2005 May; 169(3):391-7. PubMed ID: 15883193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-terminus of mitotic centromere-associated kinesin (MCAK) inhibits its lattice-stimulated ATPase activity.
    Moore A; Wordeman L
    Biochem J; 2004 Oct; 383(Pt 2):227-35. PubMed ID: 15250824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The family-specific α4-helix of the kinesin-13, MCAK, is critical to microtubule end recognition.
    Patel JT; Belsham HR; Rathbone AJ; Wickstead B; Gell C; Friel CT
    Open Biol; 2016 Oct; 6(10):. PubMed ID: 27733589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin.
    Maney T; Wagenbach M; Wordeman L
    J Biol Chem; 2001 Sep; 276(37):34753-8. PubMed ID: 11466324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK.
    Cooper JR; Wagenbach M; Asbury CL; Wordeman L
    Nat Struct Mol Biol; 2010 Jan; 17(1):77-82. PubMed ID: 19966798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization.
    Friel CT; Howard J
    EMBO J; 2011 Aug; 30(19):3928-39. PubMed ID: 21873978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling study of kinesin-13 MCAK microtubule depolymerase.
    Xie P
    Eur Biophys J; 2024 Aug; 53(5-6):339-354. PubMed ID: 39093405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the kinesin-13 neck in microtubule depolymerization.
    Moores CA; Cooper J; Wagenbach M; Ovechkina Y; Wordeman L; Milligan RA
    Cell Cycle; 2006 Aug; 5(16):1812-5. PubMed ID: 16929184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends.
    Hunter AW; Caplow M; Coy DL; Hancock WO; Diez S; Wordeman L; Howard J
    Mol Cell; 2003 Feb; 11(2):445-57. PubMed ID: 12620232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases.
    Tanenbaum ME; Macurek L; van der Vaart B; Galli M; Akhmanova A; Medema RH
    Curr Biol; 2011 Aug; 21(16):1356-65. PubMed ID: 21820309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aurora B inhibits MCAK activity through a phosphoconformational switch that reduces microtubule association.
    Ems-McClung SC; Hainline SG; Devare J; Zong H; Cai S; Carnes SK; Shaw SL; Walczak CE
    Curr Biol; 2013 Dec; 23(24):2491-9. PubMed ID: 24291095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in the ATP-binding domain affect the subcellular distribution of mitotic centromere-associated kinesin (MCAK).
    Wordeman L; Wagenbach M; Maney T
    Cell Biol Int; 1999; 23(4):275-86. PubMed ID: 10600236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor-dependent microtubule disassembly driven by tubulin tyrosination.
    Peris L; Wagenbach M; Lafanechère L; Brocard J; Moore AT; Kozielski F; Job D; Wordeman L; Andrieux A
    J Cell Biol; 2009 Jun; 185(7):1159-66. PubMed ID: 19564401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a kinesin microtubule depolymerization machine.
    Shipley K; Hekmat-Nejad M; Turner J; Moores C; Anderson R; Milligan R; Sakowicz R; Fletterick R
    EMBO J; 2004 Apr; 23(7):1422-32. PubMed ID: 15029249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover.
    Wordeman L; Wagenbach M; von Dassow G
    J Cell Biol; 2007 Dec; 179(5):869-79. PubMed ID: 18039936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 15 A resolution model of the monomeric kinesin motor, KIF1A.
    Kikkawa M; Okada Y; Hirokawa N
    Cell; 2000 Jan; 100(2):241-52. PubMed ID: 10660047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian mitotic centromere-associated kinesin (MCAK): a new molecular target of sulfoquinovosylacylglycerols novel antitumor and immunosuppressive agents.
    Aoki S; Ohta K; Yamazaki T; Sugawara F; Sakaguchi K
    FEBS J; 2005 May; 272(9):2132-40. PubMed ID: 15853798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-length dimeric MCAK is a more efficient microtubule depolymerase than minimal domain monomeric MCAK.
    Hertzer KM; Ems-McClung SC; Kline-Smith SL; Lipkin TG; Gilbert SP; Walczak CE
    Mol Biol Cell; 2006 Feb; 17(2):700-10. PubMed ID: 16291860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Catalytic Microtubule Depolymerization via KIF2-Tubulin Transitional Conformation.
    Ogawa T; Saijo S; Shimizu N; Jiang X; Hirokawa N
    Cell Rep; 2017 Sep; 20(11):2626-2638. PubMed ID: 28903043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.