These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12446739)

  • 21. The mechanism, function and regulation of depolymerizing kinesins during mitosis.
    Moore A; Wordeman L
    Trends Cell Biol; 2004 Oct; 14(10):537-46. PubMed ID: 15450976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The C-termini of tubulin and the specific geometry of tubulin substrates influence the depolymerization activity of MCAK.
    Hertzer KM; Walczak CE
    Cell Cycle; 2008 Sep; 7(17):2727-37. PubMed ID: 18758237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MCAK associates with EB1.
    Lee T; Langford KJ; Askham JM; Brüning-Richardson A; Morrison EE
    Oncogene; 2008 Apr; 27(17):2494-500. PubMed ID: 17968321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mechanism for microtubule depolymerization by KinI kinesins.
    Moores CA; Yu M; Guo J; Beraud C; Sakowicz R; Milligan RA
    Mol Cell; 2002 Apr; 9(4):903-9. PubMed ID: 11983180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ternary complex of Kif2A-bound tandem tubulin heterodimers represents a kinesin-13-mediated microtubule depolymerization reaction intermediate.
    Trofimova D; Paydar M; Zara A; Talje L; Kwok BH; Allingham JS
    Nat Commun; 2018 Jul; 9(1):2628. PubMed ID: 29980677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro reconstitution of the functional interplay between MCAK and EB3 at microtubule plus ends.
    Montenegro Gouveia S; Leslie K; Kapitein LC; Buey RM; Grigoriev I; Wagenbach M; Smal I; Meijering E; Hoogenraad CC; Wordeman L; Steinmetz MO; Akhmanova A
    Curr Biol; 2010 Oct; 20(19):1717-22. PubMed ID: 20850319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends.
    Helenius J; Brouhard G; Kalaidzidis Y; Diez S; Howard J
    Nature; 2006 May; 441(7089):115-9. PubMed ID: 16672973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new look at the microtubule binding patterns of dimeric kinesins.
    Hoenger A; Thormählen M; Diaz-Avalos R; Doerhoefer M; Goldie KN; Müller J; Mandelkow E
    J Mol Biol; 2000 Apr; 297(5):1087-103. PubMed ID: 10764575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular insight into the regulation and function of MCAK.
    Ritter A; Kreis NN; Louwen F; Wordeman L; Yuan J
    Crit Rev Biochem Mol Biol; 2015; 51(4):228-45. PubMed ID: 27146484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends.
    Oguchi Y; Uchimura S; Ohki T; Mikhailenko SV; Ishiwata S
    Nat Cell Biol; 2011 May; 13(7):846-52. PubMed ID: 21602793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The interplay of the N- and C-terminal domains of MCAK control microtubule depolymerization activity and spindle assembly.
    Ems-McClung SC; Hertzer KM; Zhang X; Miller MW; Walczak CE
    Mol Biol Cell; 2007 Jan; 18(1):282-94. PubMed ID: 17093055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinct Interaction Modes of the Kinesin-13 Motor Domain with the Microtubule.
    Chatterjee C; Benoit MPMH; DePaoli V; Diaz-Valencia JD; Asenjo AB; Gerfen GJ; Sharp DJ; Sosa H
    Biophys J; 2016 Apr; 110(7):1593-1604. PubMed ID: 27074684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A second tubulin binding site on the kinesin-13 motor head domain is important during mitosis.
    Zhang D; Asenjo AB; Greenbaum M; Xie L; Sharp DJ; Sosa H
    PLoS One; 2013; 8(8):e73075. PubMed ID: 24015286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The depolymerase activity of MCAK shows a graded response to Aurora B kinase phosphorylation through allosteric regulation.
    McHugh T; Zou J; Volkov VA; Bertin A; Talapatra SK; Rappsilber J; Dogterom M; Welburn JPI
    J Cell Sci; 2019 Jan; 132(4):. PubMed ID: 30578316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signaling-dependent phosphorylation of mitotic centromere-associated kinesin regulates microtubule depolymerization and its centrosomal localization.
    Pakala SB; Nair VS; Reddy SD; Kumar R
    J Biol Chem; 2012 Nov; 287(48):40560-9. PubMed ID: 23055517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of mitotic centromere-associated Kinesin stimulates microtubule detachment and confers resistance to paclitaxel.
    Ganguly A; Yang H; Cabral F
    Mol Cancer Ther; 2011 Jun; 10(6):929-37. PubMed ID: 21471284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural links to kinesin directionality and movement.
    Wade RH; Kozielski F
    Nat Struct Biol; 2000 Jun; 7(6):456-60. PubMed ID: 10881190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MCAK, a Kin I kinesin, increases the catastrophe frequency of steady-state HeLa cell microtubules in an ATP-dependent manner in vitro.
    Newton CN; Wagenbach M; Ovechkina Y; Wordeman L; Wilson L
    FEBS Lett; 2004 Aug; 572(1-3):80-4. PubMed ID: 15304328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleotide exchange in dimeric MCAK induces longitudinal and lateral stress at microtubule ends to support depolymerization.
    Burns KM; Wagenbach M; Wordeman L; Schriemer DC
    Structure; 2014 Aug; 22(8):1173-1183. PubMed ID: 25066134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Altered motor activity of alternative splice variants of the mammalian kinesin-3 protein KIF1B.
    Matsushita M; Yamamoto R; Mitsui K; Kanazawa H
    Traffic; 2009 Nov; 10(11):1647-54. PubMed ID: 19744141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.