BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 12446765)

  • 21. Developmental co-variation of RNA editing extent of plastid editing sites exhibiting similar cis-elements.
    Chateigner-Boutin AL; Hanson MR
    Nucleic Acids Res; 2003 May; 31(10):2586-94. PubMed ID: 12736308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of critical nucleotide positions for plastid RNA editing site recognition.
    Bock R; Hermann M; Fuchs M
    RNA; 1997 Oct; 3(10):1194-200. PubMed ID: 9326494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Editing of the chloroplast rpoB transcript is independent of chloroplast translation and shows different patterns in barley and maize.
    Zeltz P; Hess WR; Neckermann K; Börner T; Kössel H
    EMBO J; 1993 Nov; 12(11):4291-6. PubMed ID: 8223439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PREP-Mt: predictive RNA editor for plant mitochondrial genes.
    Mower JP
    BMC Bioinformatics; 2005 Apr; 6():96. PubMed ID: 15826309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Faithful editing of a tomato-specific mRNA editing site in transgenic tobacco chloroplasts.
    Karcher D; Kahlau S; Bock R
    RNA; 2008 Feb; 14(2):217-24. PubMed ID: 18065714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Creation of a novel protein-coding region at the RNA level in black pine chloroplasts: the pattern of RNA editing in the gymnosperm chloroplast is different from that in angiosperms.
    Wakasugi T; Hirose T; Horihata M; Tsudzuki T; Kössel H; Sugiura M
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8766-70. PubMed ID: 8710946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics and prediction of RNA editing sites in transcripts of the Moss Takakia lepidozioides chloroplast.
    Yura K; Miyata Y; Arikawa T; Higuchi M; Sugita M
    DNA Res; 2008 Oct; 15(5):309-21. PubMed ID: 18650260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RESOPS: a database for analyzing the correspondence of RNA editing sites to protein three-dimensional structures.
    Yura K; Sulaiman S; Hatta Y; Shionyu M; Go M
    Plant Cell Physiol; 2009 Nov; 50(11):1865-73. PubMed ID: 19808808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequent chloroplast RNA editing in early-branching flowering plants: pilot studies on angiosperm-wide coexistence of editing sites and their nuclear specificity factors.
    Hein A; Polsakiewicz M; Knoop V
    BMC Evol Biol; 2016 Jan; 16():23. PubMed ID: 26809609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate and cofactor requirements for RNA editing of chloroplast transcripts in Arabidopsis in vitro.
    Hegeman CE; Hayes ML; Hanson MR
    Plant J; 2005 Apr; 42(1):124-32. PubMed ID: 15773858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Editing site recognition in plant mitochondria: the importance of 5'-flanking sequences.
    Williams MA; Kutcher BM; Mulligan RM
    Plant Mol Biol; 1998 Jan; 36(2):229-37. PubMed ID: 9484435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A systematic search for RNA editing sites in pea chloroplasts: an editing event causes diversification from the evolutionarily conserved amino acid sequence.
    Inada M; Sasaki T; Yukawa M; Tsudzuki T; Sugiura M
    Plant Cell Physiol; 2004 Nov; 45(11):1615-22. PubMed ID: 15574837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pentatricopeptide repeat proteins constrain genome evolution in chloroplasts.
    Hayes ML; Mulligan RM
    Mol Biol Evol; 2011 Jul; 28(7):2029-39. PubMed ID: 21263042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants.
    Yoshinaga K; Iinuma H; Masuzawa T; Uedal K
    Nucleic Acids Res; 1996 Mar; 24(6):1008-14. PubMed ID: 8604330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accelerated evolution of sites undergoing mRNA editing in plant mitochondria and chloroplasts.
    Shields DC; Wolfe KH
    Mol Biol Evol; 1997 Mar; 14(3):344-9. PubMed ID: 9066800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Internal editing of the maize chloroplast ndhA transcript restores codons for conserved amino acids.
    Maier RM; Hoch B; Zeltz P; Kössel H
    Plant Cell; 1992 May; 4(5):609-16. PubMed ID: 1498612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns - a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles.
    Knie N; Grewe F; Fischer S; Knoop V
    BMC Evol Biol; 2016 Jun; 16(1):134. PubMed ID: 27329857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The pentatricopeptide repeat protein OTP82 is required for RNA editing of plastid ndhB and ndhG transcripts.
    Okuda K; Hammani K; Tanz SK; Peng L; Fukao Y; Myouga F; Motohashi R; Shinozaki K; Small I; Shikanai T
    Plant J; 2010 Jan; 61(2):339-49. PubMed ID: 19845878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of RNA editing sites in higher plant chloroplasts.
    Tsudzuki T; Wakasugi T; Sugiura M
    J Mol Evol; 2001; 53(4-5):327-32. PubMed ID: 11675592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seamless editing of the chloroplast genome in plants.
    Martin Avila E; Gisby MF; Day A
    BMC Plant Biol; 2016 Jul; 16(1):168. PubMed ID: 27474038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.