BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 12446775)

  • 1. Inhibition of translation termination mediated by an interaction of eukaryotic release factor 1 with a nascent peptidyl-tRNA.
    Janzen DM; Frolova L; Geballe AP
    Mol Cell Biol; 2002 Dec; 22(24):8562-70. PubMed ID: 12446775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomal release without peptidyl tRNA hydrolysis at translation termination in a eukaryotic system.
    Cao J; Geballe AP
    RNA; 1998 Feb; 4(2):181-8. PubMed ID: 9570317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of nascent-peptide release at translation termination.
    Cao J; Geballe AP
    Mol Cell Biol; 1996 Dec; 16(12):7109-14. PubMed ID: 8943366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Influence of individual domains of the translation termination factor eRF1 on induction of the GTPase activity of the translation termination factor eRF3].
    Dubovaia VI; Kolosov PM; Alkalaeva EZ; Frolova LIu; Kiselev LL
    Mol Biol (Mosk); 2006; 40(2):310-6. PubMed ID: 16637272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulatory TnaC nascent peptide preferentially inhibits release factor 2-mediated hydrolysis of peptidyl-tRNA.
    Emmanuel JS; Sengupta A; Gordon ER; Noble JT; Cruz-Vera LR
    J Biol Chem; 2019 Dec; 294(50):19224-19235. PubMed ID: 31712310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical footprinting reveals conformational changes of 18S and 28S rRNAs at different steps of translation termination on the human ribosome.
    Bulygin KN; Bartuli YS; Malygin AA; Graifer DM; Frolova LY; Karpova GG
    RNA; 2016 Feb; 22(2):278-89. PubMed ID: 26655225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryo-EM structure of the mammalian eukaryotic release factor eRF1-eRF3-associated termination complex.
    Taylor D; Unbehaun A; Li W; Das S; Lei J; Liao HY; Grassucci RA; Pestova TV; Frank J
    Proc Natl Acad Sci U S A; 2012 Nov; 109(45):18413-8. PubMed ID: 23091004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase.
    Frolova L; Le Goff X; Zhouravleva G; Davydova E; Philippe M; Kisselev L
    RNA; 1996 Apr; 2(4):334-41. PubMed ID: 8634914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3.
    Alkalaeva EZ; Pisarev AV; Frolova LY; Kisselev LL; Pestova TV
    Cell; 2006 Jun; 125(6):1125-36. PubMed ID: 16777602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis.
    Frolova LY; Tsivkovskii RY; Sivolobova GF; Oparina NY; Serpinsky OI; Blinov VM; Tatkov SI; Kisselev LL
    RNA; 1999 Aug; 5(8):1014-20. PubMed ID: 10445876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational effects of mutations and polymorphisms in a repressive upstream open reading frame of the human cytomegalovirus UL4 gene.
    Alderete JP; Jarrahian S; Geballe AP
    J Virol; 1999 Oct; 73(10):8330-7. PubMed ID: 10482583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic class 1 translation termination factor eRF1--the NMR structure and dynamics of the middle domain involved in triggering ribosome-dependent peptidyl-tRNA hydrolysis.
    Ivanova EV; Kolosov PM; Birdsall B; Kelly G; Pastore A; Kisselev LL; Polshakov VI
    FEBS J; 2007 Aug; 274(16):4223-37. PubMed ID: 17651434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translation termination in eukaryotes: polypeptide release factor eRF1 is composed of functionally and structurally distinct domains.
    Frolova LY; Merkulova TI; Kisselev LL
    RNA; 2000 Mar; 6(3):381-90. PubMed ID: 10744022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring contacts of eRF1 with the 3'-terminus of the P site tRNA and mRNA stop signal in the human ribosome at various translation termination steps.
    Bulygin KN; Graifer DM; Hountondji C; Frolova LY; Karpova GG
    Biochim Biophys Acta Gene Regul Mech; 2017 Jul; 1860(7):782-793. PubMed ID: 28457996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coding sequence-dependent ribosomal arrest at termination of translation.
    Cao J; Geballe AP
    Mol Cell Biol; 1996 Feb; 16(2):603-8. PubMed ID: 8552088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific release of nascent chains from ribosomes at a sense codon.
    Doronina VA; Wu C; de Felipe P; Sachs MS; Ryan MD; Brown JD
    Mol Cell Biol; 2008 Jul; 28(13):4227-39. PubMed ID: 18458056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of human eukaryotic release factor eRF1--mechanism of stop codon recognition and peptidyl-tRNA hydrolysis.
    Song H; Mugnier P; Das AK; Webb HM; Evans DR; Tuite MF; Hemmings BA; Barford D
    Cell; 2000 Feb; 100(3):311-21. PubMed ID: 10676813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ArfA recruits release factor 2 to rescue stalled ribosomes by peptidyl-tRNA hydrolysis in Escherichia coli.
    Chadani Y; Ito K; Kutsukake K; Abo T
    Mol Microbiol; 2012 Oct; 86(1):37-50. PubMed ID: 22857598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational inhibition mediated by a short upstream open reading frame in the human cytomegalovirus gpUL4 (gp48) transcript.
    Degnin CR; Schleiss MR; Cao J; Geballe AP
    J Virol; 1993 Sep; 67(9):5514-21. PubMed ID: 8394459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1.
    Preis A; Heuer A; Barrio-Garcia C; Hauser A; Eyler DE; Berninghausen O; Green R; Becker T; Beckmann R
    Cell Rep; 2014 Jul; 8(1):59-65. PubMed ID: 25001285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.