BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 12446845)

  • 1. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae.
    Dunham MJ; Badrane H; Ferea T; Adams J; Brown PO; Rosenzweig F; Botstein D
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16144-9. PubMed ID: 12446845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast.
    Infante JJ; Dombek KM; Rebordinos L; Cantoral JM; Young ET
    Genetics; 2003 Dec; 165(4):1745-59. PubMed ID: 14704163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype.
    Putnam CD; Pennaneach V; Kolodner RD
    Mol Cell Biol; 2005 Aug; 25(16):7226-38. PubMed ID: 16055731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genome hybridization on tiling microarrays to detect aneuploidies in yeast.
    Dion B; Brown GW
    Methods Mol Biol; 2009; 548():1-18. PubMed ID: 19521816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplification of a Zygosaccharomyces bailii DNA segment in wine yeast genomes by extrachromosomal circular DNA formation.
    Galeote V; Bigey F; Beyne E; Novo M; Legras JL; Casaregola S; Dequin S
    PLoS One; 2011 Mar; 6(3):e17872. PubMed ID: 21423766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation.
    Bond U; Neal C; Donnelly D; James TC
    Curr Genet; 2004 Jun; 45(6):360-70. PubMed ID: 15103502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequencing and characterisation of rearrangements in three S. pastorianus strains reveals the presence of chimeric genes and gives evidence of breakpoint reuse.
    Hewitt SK; Donaldson IJ; Lovell SC; Delneri D
    PLoS One; 2014; 9(3):e92203. PubMed ID: 24643015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of gene order in the genomes of two related yeast species.
    Fischer G; Neuvéglise C; Durrens P; Gaillardin C; Dujon B
    Genome Res; 2001 Dec; 11(12):2009-19. PubMed ID: 11731490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different aneuploidies arise from the same bridge-induced chromosomal translocation event in Saccharomyces cerevisiae.
    Rossi B; Noel P; Bruschi CV
    Genetics; 2010 Nov; 186(3):775-90. PubMed ID: 20805555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomics of wild type yeast strains unveils important genome diversity.
    Carreto L; Eiriz MF; Gomes AC; Pereira PM; Schuller D; Santos MA
    BMC Genomics; 2008 Nov; 9():524. PubMed ID: 18983662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-genome sequencing of a laboratory-evolved yeast strain.
    Araya CL; Payen C; Dunham MJ; Fields S
    BMC Genomics; 2010 Feb; 11():88. PubMed ID: 20128923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of genetic background on the occurrence of chromosomal rearrangements in Saccharomyces cerevisiae.
    Fritsch ES; Schacherer J; Bleykasten-Grosshans C; Souciet JL; Potier S; de Montigny J
    BMC Genomics; 2009 Mar; 10():99. PubMed ID: 19267901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome.
    Gordon JL; Byrne KP; Wolfe KH
    PLoS Genet; 2009 May; 5(5):e1000485. PubMed ID: 19436716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination.
    Myung K; Datta A; Chen C; Kolodner RD
    Nat Genet; 2001 Jan; 27(1):113-6. PubMed ID: 11138010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains.
    Pérez-Ortín JE; Querol A; Puig S; Barrio E
    Genome Res; 2002 Oct; 12(10):1533-9. PubMed ID: 12368245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosome rearrangements in isolates that escape from het-c heterokaryon incompatibility in Neurospora crassa.
    Xiang Q; Glass NL
    Curr Genet; 2004 Jan; 44(6):329-38. PubMed ID: 14564476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair.
    Chen C; Umezu K; Kolodner RD
    Mol Cell; 1998 Jul; 2(1):9-22. PubMed ID: 9702187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction and identification of recurrent genomic rearrangements that generate chimeric chromosomes in
    Palacios-Flores K; Castillo A; Uribe C; García Sotelo J; Boege M; Dávila G; Flores M; Palacios R; Morales L
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8445-8450. PubMed ID: 30962378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression.
    Dunn B; Paulish T; Stanbery A; Piotrowski J; Koniges G; Kroll E; Louis EJ; Liti G; Sherlock G; Rosenzweig F
    PLoS Genet; 2013 Mar; 9(3):e1003366. PubMed ID: 23555283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence of 29 kb around the PDR10 locus on the right arm of Saccharomyces cerevisiae chromosome XV: similarity to part of chromosome I.
    Parle-McDermott AG; Hand NJ; Goulding SE; Wolfe KH
    Yeast; 1996 Sep; 12(10B Suppl):999-1004. PubMed ID: 8896263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.