BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 1244851)

  • 1. Influence of temperature and magnesium ions on the secondary and tertiary structures of tRNAPhe and 23 S RNA - infrared investigations.
    Herbeck R; Zundel G
    Biochim Biophys Acta; 1976 Jan; 418(1):52-62. PubMed ID: 1244851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The significance of the 2' OH group and the influence of cations on the secondary structure of the RNA backbone.
    Kölkenbeck K; Zundel G
    Biophys Struct Mech; 1975 May; 1(3):203-19. PubMed ID: 1234026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves.
    Römer R; Hach R
    Eur J Biochem; 1975 Jun; 55(1):271-84. PubMed ID: 1100382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal and Mg2+ dependent behavior of pseudouridines at 39th and 55th of yeast tRNAPhe.
    Nagamatsu K; Miyazawa Y
    Nucleic Acids Symp Ser; 1983; (12):133-6. PubMed ID: 6664847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate of tritium labeling of specific purines in relation to nucleic acid and particularly transfer RNA conformation.
    Gamble RC; Schoemaker JP
    Biochemistry; 1976 Jun; 15(13):2791-9. PubMed ID: 949477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of magnesium and polyamines on the structure of yeast tRNAPhe.
    Bolton PH; Kearns DR
    Biochim Biophys Acta; 1977 Jul; 477(1):10-9. PubMed ID: 884107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mg2+ binding and structural stability of mature and in vitro synthesized unmodified Escherichia coli tRNAPhe.
    Serebrov V; Vassilenko K; Kholod N; Gross HJ; Kisselev L
    Nucleic Acids Res; 1998 Jun; 26(11):2723-8. PubMed ID: 9592160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectra and structure of yeast phenylalanine transfer RNA in the crystalline state and in solution.
    Chen MC; Giegé R; Lord RC; Rich A
    Biochemistry; 1975 Oct; 14(20):4385-91. PubMed ID: 1100103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticodon loop of tRNAPhe: structure, dynamics, and Mg2+ binding.
    Bujalowski W; Graeser E; McLaughlin LW; Proschke D
    Biochemistry; 1986 Oct; 25(21):6365-71. PubMed ID: 3539189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of magnesium and potassium ions in the molecular mechanism of ribosome assembly: hydrodynamic, conformational, and thermal stability studies of 16 S RNA from Escherichia coli ribosomes.
    Allen SH; Wong KP
    Arch Biochem Biophys; 1986 Aug; 249(1):137-47. PubMed ID: 3527066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the thermal unfolding of Escherichia coli phenylalanine transfer RNA by chemical modification at elevated temperatures.
    Goddard JP; Lowdon M
    Eur J Biochem; 1978 Sep; 89(2):531-41. PubMed ID: 361393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved unpaired adenine residues are important for ordered structures of 5S ribosomal RNA. An infrared study of the secondary and tertiary structure of Thermus thermophilus 5S rRNA.
    Böhm S; Venyaminov SYu ; Fabian H; Filimonov VV; Welfle H
    Eur J Biochem; 1985 Mar; 147(3):503-10. PubMed ID: 2579810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-ligant interactions. (I) Magnesium binding sites in yeast tRNAPhe.
    Holbrook SR; Sussman JL; Warrant RW; Church GM; Kim SH
    Nucleic Acids Res; 1977 Aug; 4(8):2811-20. PubMed ID: 333395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of tertiary base pair resonances in the nuclear magnetic resonance spectra of transfer ribonucleic acid.
    Reid BR; McCollum L; Ribeiro NS; Abbate J; Hurd RE
    Biochemistry; 1979 Sep; 18(18):3996-4005. PubMed ID: 385039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese(II) as a paramagnetic probe of the tertiary structure of transfer RNA.
    Chao YY; Kearns DR
    Biochim Biophys Acta; 1977 Jul; 477(1):20-7. PubMed ID: 328046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complexity in orchestration of chemical groups near different cleavage sites in RNase P RNA mediated cleavage.
    Brännvall M; Kirsebom LA
    J Mol Biol; 2005 Aug; 351(2):251-7. PubMed ID: 16005891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial stages of the thermal unfolding of yeast phenylalanine transfer RNA as studied by chemical modification: the effect of magnesium.
    Rhodes D
    Eur J Biochem; 1977 Nov; 81(1):91-101. PubMed ID: 412674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the structure and conformational dynamics of yeast phenylalanine-accepting transfer ribonucleic acid in solution.
    Ehrenberg M; Rigler R; Wintermeyer W
    Biochemistry; 1979 Oct; 18(21):4588-99. PubMed ID: 387074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes of yeast tRNAphe as monitored by 31P NMR.
    Salemink PJ; Reijerse EJ; Mollevanger LC; Hilbers CW
    Eur J Biochem; 1981 Apr; 115(3):635-41. PubMed ID: 7238525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base pairing in Bacillus subtilis ribosomal 5S RNA as measured by ultraviolet absorption and Fourier-transform infrared spectrometry.
    Chang LH; Burkey KO; Alben JO; Marshall AG
    Biochemistry; 1984 Jul; 23(16):3659-62. PubMed ID: 6433974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.