These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 12448706)

  • 1. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments.
    Konings WN; Albers SV; Koning S; Driessen AJ
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):61-72. PubMed ID: 12448706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioenergetics and solute uptake under extreme conditions.
    Albers SV; Van de Vossenberg JL; Driessen AJ; Konings WN
    Extremophiles; 2001 Oct; 5(5):285-94. PubMed ID: 11699642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptations of the archaeal cell membrane to heat stress.
    Albers SV; van de Vossenberg JL; Driessen AJ; Konings WN
    Front Biosci; 2000 Sep; 5():D813-20. PubMed ID: 10966867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea.
    van de Vossenberg JL; Ubbink-Kok T; Elferink MG; Driessen AJ; Konings WN
    Mol Microbiol; 1995 Dec; 18(5):925-32. PubMed ID: 8825096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of microorganisms and their transport systems to high temperatures.
    Tolner B; Poolman B; Konings WN
    Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):423-8. PubMed ID: 9406426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial transport: adaptations to natural environments.
    Konings WN
    Antonie Van Leeuwenhoek; 2006 Nov; 90(4):325-42. PubMed ID: 17043914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bioenergetic basis for membrane divergence in archaea and bacteria.
    Sojo V; Pomiankowski A; Lane N
    PLoS Biol; 2014 Aug; 12(8):e1001926. PubMed ID: 25116890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The essence of being extremophilic: the role of the unique archaeal membrane lipids.
    van de Vossenberg JL; Driessen AJ; Konings WN
    Extremophiles; 1998 Aug; 2(3):163-70. PubMed ID: 9783161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin of membrane bioenergetics.
    Lane N; Martin WF
    Cell; 2012 Dec; 151(7):1406-16. PubMed ID: 23260134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of energy-transducing properties of cytoplasmic membranes from mesophilic and thermophilic Bacillus species.
    De Vrij W; Bulthuis RA; Konings WN
    J Bacteriol; 1988 May; 170(5):2359-66. PubMed ID: 2834342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Affinity of ribosomal protein S8 from mesophilic and (hyper)thermophilic archaea and bacteria for 16S rRNA correlates with the growth temperatures of the organisms.
    Gruber T; Köhrer C; Lung B; Shcherbakov D; Piendl W
    FEBS Lett; 2003 Aug; 549(1-3):123-8. PubMed ID: 12914937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar transport in (hyper)thermophilic archaea.
    Koning SM; Albers SV; Konings WN; Driessen AJ
    Res Microbiol; 2002 Mar; 153(2):61-7. PubMed ID: 11902154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes.
    Yoshinaga MY; Kellermann MY; Valentine DL; Valentine RC
    Prog Lipid Res; 2016 Oct; 64():1-15. PubMed ID: 27448687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy transduction and transport processes in thermophilic bacteria.
    Konings WN; Tolner B; Speelmans G; Elferink MG; de Wit JG; Driessen AJ
    J Bioenerg Biomembr; 1992 Dec; 24(6):601-9. PubMed ID: 1459990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid membranes from halophilic and alkali-halophilic Archaea have a low H+ and Na+ permeability at high salt concentration.
    van de Vossenberg JL; Driessen AJ; Grant WD; Konings WN
    Extremophiles; 1999 Nov; 3(4):253-7. PubMed ID: 10591015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure.
    Siliakus MF; van der Oost J; Kengen SWM
    Extremophiles; 2017 Jul; 21(4):651-670. PubMed ID: 28508135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synonymous codon usage and its potential link with optimal growth temperature in prokaryotes.
    Lobry JR; Necşulea A
    Gene; 2006 Dec; 385():128-36. PubMed ID: 16989961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of amino acid transport in membrane vesicles from the thermophilic fermentative bacterium Clostridium fervidus.
    Speelmans G; de Vrij W; Konings WN
    J Bacteriol; 1989 Jul; 171(7):3788-95. PubMed ID: 2567728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of water and solute transport across archaebacterial lipid membranes.
    Mathai JC; Sprott GD; Zeidel ML
    J Biol Chem; 2001 Jul; 276(29):27266-71. PubMed ID: 11373291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.