These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 12448716)
1. The distribution and activity of sulphate reducing bacteria in estuarine and coastal marine sediments. Purdy KJ; Embley TM; Nedwell DB Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):181-7. PubMed ID: 12448716 [TBL] [Abstract][Full Text] [Related]
2. Sulfate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea. Matsui GY; Ringelberg DB; Lovell CR Appl Environ Microbiol; 2004 Dec; 70(12):7053-65. PubMed ID: 15574900 [TBL] [Abstract][Full Text] [Related]
3. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Mussmann M; Ishii K; Rabus R; Amann R Environ Microbiol; 2005 Mar; 7(3):405-18. PubMed ID: 15683401 [TBL] [Abstract][Full Text] [Related]
4. Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Wieringa EB; Overmann J; Cypionka H Environ Microbiol; 2000 Aug; 2(4):417-27. PubMed ID: 11234930 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Purdy KJ; Nedwell DB; Embley TM Appl Environ Microbiol; 2003 Jun; 69(6):3181-91. PubMed ID: 12788715 [TBL] [Abstract][Full Text] [Related]
6. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Ravenschlag K; Sahm K; Knoblauch C; Jørgensen BB; Amann R Appl Environ Microbiol; 2000 Aug; 66(8):3592-602. PubMed ID: 10919825 [TBL] [Abstract][Full Text] [Related]
7. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related]
8. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. King JK; Kostka JE; Frischer ME; Saunders FM Appl Environ Microbiol; 2000 Jun; 66(6):2430-7. PubMed ID: 10831421 [TBL] [Abstract][Full Text] [Related]
9. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Klepac-Ceraj V; Bahr M; Crump BC; Teske AP; Hobbie JE; Polz MF Environ Microbiol; 2004 Jul; 6(7):686-98. PubMed ID: 15186347 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic microbiota: spatial-temporal changes in the sediment of a tropical coastal lagoon with ephemeral inlet in the Gulf of Mexico. Torres-Alvarado MR; Calva-Benítez LG; Álvarez-Hernández S; Trejo-Aguilar G Rev Biol Trop; 2016 Dec; 64(4):1759-70. PubMed ID: 29465951 [TBL] [Abstract][Full Text] [Related]
11. Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters. Colin Y; Goñi-Urriza M; Gassie C; Carlier E; Monperrus M; Guyoneaud R Microb Ecol; 2017 Jan; 73(1):39-49. PubMed ID: 27581035 [TBL] [Abstract][Full Text] [Related]
12. Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. Jiang L; Zheng Y; Peng X; Zhou H; Zhang C; Xiao X; Wang F FEMS Microbiol Ecol; 2009 Nov; 70(2):93-106. PubMed ID: 19744241 [TBL] [Abstract][Full Text] [Related]
13. Diversity of substrate utilization and growth characteristics of sulfate-reducing bacteria isolated from estuarine sediment in Japan. Suzuki D; Ueki A; Amaishi A; Ueki K J Gen Appl Microbiol; 2007 Apr; 53(2):119-32. PubMed ID: 17575452 [TBL] [Abstract][Full Text] [Related]
14. Phylogeography of sulfate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB). Pérez-Jiménez JR; Kerkhof LJ Appl Environ Microbiol; 2005 Feb; 71(2):1004-11. PubMed ID: 15691959 [TBL] [Abstract][Full Text] [Related]
15. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related]
16. A highly selective direct method of detecting sulphate-reducing bacteria in crude oil. Tanaka Y; Sogabe M; Okumura K; Kurane R Lett Appl Microbiol; 2002; 35(3):242-6. PubMed ID: 12180949 [TBL] [Abstract][Full Text] [Related]
17. Subsurface microbial methanotrophic mats in the Black Sea. Treude T; Knittel K; Blumenberg M; Seifert R; Boetius A Appl Environ Microbiol; 2005 Oct; 71(10):6375-8. PubMed ID: 16204560 [TBL] [Abstract][Full Text] [Related]
18. Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Miralles G; Grossi V; Acquaviva M; Duran R; Claude Bertrand J; Cuny P Chemosphere; 2007 Jul; 68(7):1327-34. PubMed ID: 17337033 [TBL] [Abstract][Full Text] [Related]
19. Abundance and diversity of sulfate-reducing bacteria in the sediment of the Zhou Cun drinking water reservoir in Eastern China. Yang X; Huang TL; Guo L; Xia C; Zhang HH; Zhou SL Genet Mol Res; 2015 May; 14(2):5830-44. PubMed ID: 26125782 [TBL] [Abstract][Full Text] [Related]
20. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]