BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 12449384)

  • 1. Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria.
    Marx CJ; Lidstrom ME
    Biotechniques; 2002 Nov; 33(5):1062-7. PubMed ID: 12449384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined sacB-based negative selection and cre-lox antibiotic marker recycling for efficient gene deletion in pseudomonas aeruginosa.
    Quénée L; Lamotte D; Polack B
    Biotechniques; 2005 Jan; 38(1):63-7. PubMed ID: 15679087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suicide vectors for antibiotic marker exchange and rapid generation of multiple knockout mutants by allelic exchange in Gram-negative bacteria.
    Ortiz-Martín I; Macho AP; Lambersten L; Ramos C; Beuzón CR
    J Microbiol Methods; 2006 Dec; 67(3):395-407. PubMed ID: 16750581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria.
    Marx CJ; Lidstrom ME
    Microbiology (Reading); 2001 Aug; 147(Pt 8):2065-2075. PubMed ID: 11495985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cre/loxP-Mediated Multicopy Integration of the Mevalonate Operon into the Genome of Methylobacterium extorquens AM1.
    Liang WF; Sun MY; Cui LY; Zhang C; Xing XH
    Appl Biochem Biotechnol; 2018 Jul; 185(3):565-577. PubMed ID: 29243041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum.
    Lambert JM; Bongers RS; Kleerebezem M
    Appl Environ Microbiol; 2007 Feb; 73(4):1126-35. PubMed ID: 17142375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-excising Cre/mutant lox marker recycling system for multiple gene integrations and consecutive gene deletions in Aspergillus oryzae.
    Zhang S; Ban A; Ebara N; Mizutani O; Tanaka M; Shintani T; Gomi K
    J Biosci Bioeng; 2017 Apr; 123(4):403-411. PubMed ID: 28011085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A set of loxP marker cassettes for Cre-mediated multiple gene disruption in Schizosaccharomyces pombe.
    Iwaki T; Takegawa K
    Biosci Biotechnol Biochem; 2004 Mar; 68(3):545-50. PubMed ID: 15056885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast.
    Gueldener U; Heinisch J; Koehler GJ; Voss D; Hegemann JH
    Nucleic Acids Res; 2002 Mar; 30(6):e23. PubMed ID: 11884642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a broad-host-range sacB-based vector for unmarked allelic exchange.
    Marx CJ
    BMC Res Notes; 2008 Feb; 1():1. PubMed ID: 18710539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simplified generation of high-titer retrovirus producer cells for clinically relevant retroviral vectors by reversible inclusion of a lox-P-flanked marker gene.
    Loew R; Selevsek N; Fehse B; von Laer D; Baum C; Fauser A; Kuehlcke K
    Mol Ther; 2004 May; 9(5):738-46. PubMed ID: 15120335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae.
    Johansson B; Hahn-Hägerdal B
    Yeast; 2002 Feb; 19(3):225-31. PubMed ID: 11816030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific recombination of asymmetric lox sites mediated by a heterotetrameric Cre recombinase complex.
    Saraf-Levy T; Santoro SW; Volpin H; Kushnirsky T; Eyal Y; Schultz PG; Gidoni D; Carmi N
    Bioorg Med Chem; 2006 May; 14(9):3081-9. PubMed ID: 16412655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome engineering in Bacillus anthracis using Cre recombinase.
    Pomerantsev AP; Sitaraman R; Galloway CR; Kivovich V; Leppla SH
    Infect Immun; 2006 Jan; 74(1):682-93. PubMed ID: 16369025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marker removal in staphylococci via Cre recombinase and different lox sites.
    Leibig M; Krismer B; Kolb M; Friede A; Götz F; Bertram R
    Appl Environ Microbiol; 2008 Mar; 74(5):1316-23. PubMed ID: 18165371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of HIV-1 replication by an HIV-1 dependent ribozyme expression vector with the Cre/loxP (ON/OFF) system.
    Habu Y; Miyano-Kurosaki N; Nagawa T; Matsumoto N; Takeuchi H; Takaku H
    Antivir Chem Chemother; 2002 Sep; 13(5):273-81. PubMed ID: 12630675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of the selectable marker gene from transgenic tobacco plants by expression of Cre recombinase from a tobacco mosaic virus vector through agroinfection.
    Jia H; Pang Y; Chen X; Fang R
    Transgenic Res; 2006 Jun; 15(3):375-84. PubMed ID: 16779652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity.
    Silver DP; Livingston DM
    Mol Cell; 2001 Jul; 8(1):233-43. PubMed ID: 11511376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal control of Cre recombinase-mediated in vitro DNA recombination by Tet-on gene expression system.
    Guo ZM; Xu K; Yue Y; Huang B; Deng XY; Zhong NQ; Hong X; Chen XG; Xiao D
    Acta Biochim Biophys Sin (Shanghai); 2005 Feb; 37(2):133-8. PubMed ID: 15685371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trypanosoma brucei: a first-generation CRE-loxP site-specific recombination system.
    Barrett B; LaCount DJ; Donelson JE
    Exp Parasitol; 2004; 106(1-2):37-44. PubMed ID: 15013787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.