BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12450119)

  • 1. Biosynthesis of bisorbicillinoid in Trichoderma sp. USF-2690; evidence for the biosynthetic pathway, via sorbicillinol, of sorbicillin, bisorbicillinol, bisorbibutenolide, and bisorbicillinolide.
    Abe N; Arakawa T; Yamamoto K; Hirota A
    Biosci Biotechnol Biochem; 2002 Oct; 66(10):2090-9. PubMed ID: 12450119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic enantioselective total syntheses of bisorbicillinolide, bisorbicillinol, and bisorbibutenolide.
    Hong R; Chen Y; Deng L
    Angew Chem Int Ed Engl; 2005 May; 44(22):3478-81. PubMed ID: 15861438
    [No Abstract]   [Full Text] [Related]  

  • 3. Bioproduction of sorbicillin derivatives from marine Trichoderma sp.
    Abdel-Lateff A
    Z Naturforsch C J Biosci; 2008; 63(9-10):631-5. PubMed ID: 19040097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biosynthesis of bisvertinolone: evidence for oxosorbicillinol as a direct precursor.
    Abe N; Arakawa T; Hirota A
    Chem Commun (Camb); 2002 Feb; (3):204-5. PubMed ID: 12120368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Oxidized Sorbicillin Dimers with 1,1-Diphenyl-2-picrylhydrazyl-Radical Scavenging Activity from a Fungus.
    Abe N; Murata T; Hirota A
    Biosci Biotechnol Biochem; 1998; 62(11):2120-6. PubMed ID: 27393585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorbicillinol, a key intermediate of bisorbicillinoid biosynthesis in Trichoderma sp. USF-2690.
    Abe N; Sugimoto O; Arakawa T; Tanji K; Hirota A
    Biosci Biotechnol Biochem; 2001 Oct; 65(10):2271-9. PubMed ID: 11758920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bisorbicillinoids produced by the fungus Trichoderma citrinoviride affect feeding preference of the aphid Schizaphis graminum.
    Evidente A; Andolfi A; Cimmino A; Ganassi S; Altomare C; Favilla M; De Cristofaro A; Vitagliano S; Agnese Sabatini M
    J Chem Ecol; 2009 May; 35(5):533-41. PubMed ID: 19418099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical studies of the radical scavenging mechanism of bisorbicillinol using the 1,1-diphenyl-2-picrylhydrazyl radical.
    Abe N; Hirota A
    Chem Commun (Camb); 2002 Mar; (6):662-3. PubMed ID: 12120173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of the rearrangement reaction in bisorbicillinoid biosynthesis: insights into the molecular mechanisms involved.
    Nakano M; Sato H
    Org Biomol Chem; 2023 Jul; 21(26):5366-5371. PubMed ID: 37337962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigations of fungal secondary metabolites with potential anticancer activity.
    Balde ES; Andolfi A; Bruyère C; Cimmino A; Lamoral-Theys D; Vurro M; Damme MV; Altomare C; Mathieu V; Kiss R; Evidente A
    J Nat Prod; 2010 May; 73(5):969-71. PubMed ID: 20415482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel fungal metabolites, demethylsorbicillin and oxosorbicillinol, isolated from Trichoderma sp. USF-2690.
    Abe N; Yamamoto K; Hirota A
    Biosci Biotechnol Biochem; 2000 Mar; 64(3):620-2. PubMed ID: 10803967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective Total Synthesis of Bisorbicillinoid Natural Products by Enzymatic Oxidative Dearomatization/Dimerization.
    Sib A; Gulder TAM
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):12888-12891. PubMed ID: 28771960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of Antroquinonol and 4-Acetylantroquinonol B via a Polyketide Pathway Using Orsellinic Acid as a Ring Precursor in Antrodia cinnamomea.
    Chou KC; Yang SH; Wu HL; Lin PY; Chang TL; Sheu F; Chen KH; Chiang BH
    J Agric Food Chem; 2017 Jan; 65(1):74-86. PubMed ID: 28001060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel secondary metabolites, spirosorbicillinols a, B, and C, from a fungus.
    Washida K; Abe N; Sugiyama Y; Hirota A
    Biosci Biotechnol Biochem; 2009 Jun; 73(6):1355-61. PubMed ID: 19502726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel DPPH Radical Scavengers, Bisorbicillinol and Demethyltrichodimerol, from a Fungus.
    Abe N; Murata T; Hirota A
    Biosci Biotechnol Biochem; 1998; 62(4):661-6. PubMed ID: 27392553
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Derntl C; Guzmán-Chávez F; Mello-de-Sousa TM; Busse HJ; Driessen AJM; Mach RL; Mach-Aigner AR
    Front Microbiol; 2017; 8():2037. PubMed ID: 29104566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorbicillin analogues and related dimeric compounds from Penicillium notatum.
    Maskey RP; Grün-Wollny I; Laatsch H
    J Nat Prod; 2005 Jun; 68(6):865-70. PubMed ID: 15974609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two acid sorbicillin analogues from saline lands-derived fungus Trichoderma sp.
    Ma L; Liu W; Huang Y; Rong X
    J Antibiot (Tokyo); 2011 Sep; 64(9):645-7. PubMed ID: 21772303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel DPPH radical scavengers, demethylbisorbibutenolide and trichopyrone, from a fungus.
    Washida K; Abe N; Sugiyama Y; Hirota A
    Biosci Biotechnol Biochem; 2007 Apr; 71(4):1052-7. PubMed ID: 17420582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel sorbicillin analogues from the marine fungus Trichoderma sp. associated with the seastar Acanthaster planci.
    Lan WJ; Zhao Y; Xie ZL; Liang LZ; Shao WY; Zhu LP; Yang DP; Zhu XF; Li HJ
    Nat Prod Commun; 2012 Oct; 7(10):1337-40. PubMed ID: 23157004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.