These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 12450797)

  • 21. Biocatalytic degradation of pollutants.
    Parales RE; Haddock JD
    Curr Opin Biotechnol; 2004 Aug; 15(4):374-9. PubMed ID: 15296933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial chemotaxis along vapor-phase gradients of naphthalene.
    Hanzel J; Harms H; Wick LY
    Environ Sci Technol; 2010 Dec; 44(24):9304-10. PubMed ID: 21080701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial degradation of phenoxy herbicide mixtures 2,4-D and MCPP.
    Oh KH; Tuovinen OH
    Bull Environ Contam Toxicol; 1991 Aug; 47(2):222-9. PubMed ID: 1912698
    [No Abstract]   [Full Text] [Related]  

  • 24. Nature cure: bioremediation as a sustainable solution for polluted sites.
    Shekhar C
    Chem Biol; 2012 Mar; 19(3):307-8. PubMed ID: 22444583
    [No Abstract]   [Full Text] [Related]  

  • 25. [Destruction of chlorinated derivatives of phenol: ortho-chlorophenol, para-chlorophenol, and 2,4-dichlorophenoxyacetic acid by bacteria communities in anaerobic sludge].
    Berestovskaia IuIu; Ignatov VV; Markina LN; Kamnev AA; Makarov OE
    Mikrobiologiia; 2000; 69(4):483-7. PubMed ID: 11008683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation and characterization of naphthalene-degrading bacteria from sediments of Cadiz area (SW Spain).
    Nair D; Fernández-Acero FJ; García-Luque E; Riba I; Del Valls TA
    Environ Toxicol; 2008 Oct; 23(5):576-82. PubMed ID: 18528908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Update on the cometabolism of organic pollutants by bacteria.
    Nzila A
    Environ Pollut; 2013 Jul; 178():474-82. PubMed ID: 23570949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of UV-irradiation pretreatment on the degradation of 2,4-dichlorophenoxyacetic acid in water.
    Tchaikovskaya O; Sokolova I; Mayer GV; Karetnikova E; Lipatnikova E; Kuzmina S; Volostnov D
    Luminescence; 2011; 26(3):156-61. PubMed ID: 21681907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The potential of metabolomics tools in bioremediation studies.
    Villas-Bôas SG; Bruheim P
    OMICS; 2007; 11(3):305-13. PubMed ID: 17883341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isothermal titration calorimetry - a new method for the quantification of microbial degradation of trace pollutants.
    Mariana F; Buchholz F; Harms H; Yong Z; Yao J; Maskow T
    J Microbiol Methods; 2010 Jul; 82(1):42-8. PubMed ID: 20385177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lead absorption mechanisms in bacteria as strategies for lead bioremediation.
    Tiquia-Arashiro SM
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5437-5444. PubMed ID: 29736824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Special Issue: Genetics of Biodegradation and Bioremediation.
    Santero E; Díaz E
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32316688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ecology and evolution of microbial populations for bioremediation.
    Liu S; Suflita JM
    Trends Biotechnol; 1993 Aug; 11(8):344-52. PubMed ID: 7764181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The organization of the microbial biodegradation network from a systems-biology perspective.
    Pazos F; Valencia A; De Lorenzo V
    EMBO Rep; 2003 Oct; 4(10):994-9. PubMed ID: 12973298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of glucose on the amount of bacteria mineralizing 2,4-dichlorophenoxyacetic acid in soil.
    Kunc F; Rybárová J
    Folia Microbiol (Praha); 1983; 28(1):54-6. PubMed ID: 6832659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Functional evolution of bacteria in degradation of environmental pollutants].
    Nojiri H; Tsuda M
    Tanpakushitsu Kakusan Koso; 2005 Oct; 50(12):1505-9. PubMed ID: 16353392
    [No Abstract]   [Full Text] [Related]  

  • 37. Chemotaxis of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate.
    Hawkins AC; Harwood CS
    Appl Environ Microbiol; 2002 Feb; 68(2):968-72. PubMed ID: 11823246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing Microbial Pollutant Degradation by Integrating Eco-Evolutionary Principles with Environmental Biotechnology.
    Borchert E; Hammerschmidt K; Hentschel U; Deines P
    Trends Microbiol; 2021 Oct; 29(10):908-918. PubMed ID: 33812769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of dissolved oxygen concentration on biodegradation of 2,4-dichlorophenoxyacetic acid.
    Shaler TA; Klecka GM
    Appl Environ Microbiol; 1986 May; 51(5):950-5. PubMed ID: 3729394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal and radionuclide bioremediation: issues, considerations and potentials.
    Barkay T; Schaefer J
    Curr Opin Microbiol; 2001 Jun; 4(3):318-23. PubMed ID: 11378486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.