BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 12450813)

  • 1. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531.
    Whyte LG; Smits TH; Labbé D; Witholt B; Greer CW; van Beilen JB
    Appl Environ Microbiol; 2002 Dec; 68(12):5933-42. PubMed ID: 12450813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria.
    Smits TH; Balada SB; Witholt B; van Beilen JB
    J Bacteriol; 2002 Mar; 184(6):1733-42. PubMed ID: 11872725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis.
    van Beilen JB; Marín MM; Smits TH; Röthlisberger M; Franchini AG; Witholt B; Rojo F
    Environ Microbiol; 2004 Mar; 6(3):264-73. PubMed ID: 14871210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa.
    Smits TH; Witholt B; van Beilen JB
    Antonie Van Leeuwenhoek; 2003; 84(3):193-200. PubMed ID: 14574114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rubredoxins involved in alkane oxidation.
    van Beilen JB; Neuenschwander M; Smits TH; Roth C; Balada SB; Witholt B
    J Bacteriol; 2002 Mar; 184(6):1722-32. PubMed ID: 11872724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Rhodococcus opacus alkB genes in anhydrous organic solvents.
    Sameshima Y; Honda K; Kato J; Omasa T; Ohtake H
    J Biosci Bioeng; 2008 Aug; 106(2):199-203. PubMed ID: 18804065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains.
    Smits TH; Röthlisberger M; Witholt B; van Beilen JB
    Environ Microbiol; 1999 Aug; 1(4):307-17. PubMed ID: 11207749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5.
    Liu C; Wang W; Wu Y; Zhou Z; Lai Q; Shao Z
    Environ Microbiol; 2011 May; 13(5):1168-78. PubMed ID: 21261799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa.
    Marín MM; Yuste L; Rojo F
    J Bacteriol; 2003 May; 185(10):3232-7. PubMed ID: 12730186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of a recombinant alkane hydroxylase (AlkB2) from Alcanivorax borkumensis.
    Miri M; Bambai B; Tabandeh F; Sadeghizadeh M; Kamali N
    Biotechnol Lett; 2010 Apr; 32(4):497-502. PubMed ID: 19953301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane.
    Takei D; Washio K; Morikawa M
    Biotechnol Lett; 2008 Aug; 30(8):1447-52. PubMed ID: 18414802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation.
    Nie Y; Liang J; Fang H; Tang YQ; Wu XL
    Appl Environ Microbiol; 2011 Oct; 77(20):7279-88. PubMed ID: 21873474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of various alkanes using the Escherichia coli expressing an alkane hydroxylase system from Gordonia sp. TF6.
    Fujii T; Narikawa T; Takeda K; Kato J
    Biosci Biotechnol Biochem; 2004 Oct; 68(10):2171-7. PubMed ID: 15502364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Analysis of Novel
    Xiang W; Hong S; Xue Y; Ma Y
    Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375039
    [No Abstract]   [Full Text] [Related]  

  • 15. Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes.
    Lo Piccolo L; De Pasquale C; Fodale R; Puglia AM; Quatrini P
    Appl Environ Microbiol; 2011 Feb; 77(4):1204-13. PubMed ID: 21183636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants.
    Staijen IE; Marcionelli R; Witholt B
    J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New alkane-responsive expression vectors for Escherichia coli and pseudomonas.
    Smits TH; Seeger MA; Witholt B; van Beilen JB
    Plasmid; 2001 Jul; 46(1):16-24. PubMed ID: 11535032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils.
    Whyte LG; Schultz A; Beilen JB; Luz AP; Pellizari V; Labbé D; Greer CW
    FEMS Microbiol Ecol; 2002 Aug; 41(2):141-50. PubMed ID: 19709248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli.
    Staijen IE; Van Beilen JB; Witholt B
    Eur J Biochem; 2000 Apr; 267(7):1957-65. PubMed ID: 10727934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: identification of alkB and alkB-related genes.
    Belhaj A; Desnoues N; Elmerich C
    Res Microbiol; 2002; 153(6):339-44. PubMed ID: 12234007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.