These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 12450817)
1. Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Casadei MA; Mañas P; Niven G; Needs E; Mackey BM Appl Environ Microbiol; 2002 Dec; 68(12):5965-72. PubMed ID: 12450817 [TBL] [Abstract][Full Text] [Related]
2. [Relationship among growth temperature, membrane fatty acid composition and pressure resistance of Escherichia coli]. Li ZJ Wei Sheng Wu Xue Bao; 2005 Jun; 45(3):426-30. PubMed ID: 15989240 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence polarization studies on Escherichia coli membrane stability and its relation to the resistance of the cell to freeze-thawing. I. Membrane stability in cells of differing growth phase. Souzu H Biochim Biophys Acta; 1986 Oct; 861(2):353-60. PubMed ID: 3530327 [TBL] [Abstract][Full Text] [Related]
4. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782 [TBL] [Abstract][Full Text] [Related]
5. Membrane fatty acid composition and membrane fluidity as parameters of stress tolerance in yeast. Swan TM; Watson K Can J Microbiol; 1997 Jan; 43(1):70-7. PubMed ID: 9057297 [TBL] [Abstract][Full Text] [Related]
6. Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells: differences between exponential- and stationary-phase cells and variation among strains. Pagán R; Mackey B Appl Environ Microbiol; 2000 Jul; 66(7):2829-34. PubMed ID: 10877775 [TBL] [Abstract][Full Text] [Related]
7. Increased Isoprenoid Quinone Concentration Modulates Membrane Fluidity in Listeria monocytogenes at Low Growth Temperatures. Seel W; Flegler A; Zunabovic-Pichler M; Lipski A J Bacteriol; 2018 Jul; 200(13):. PubMed ID: 29661862 [No Abstract] [Full Text] [Related]
8. Influence of membrane fatty acid composition and fluidity on airborne survival of Escherichia coli. Ng TW; Chan WL; Lai KM Appl Microbiol Biotechnol; 2018 Apr; 102(7):3327-3336. PubMed ID: 29450618 [TBL] [Abstract][Full Text] [Related]
9. The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids in Yersinia enterocolitica. Abbas CA; Card GL Biochim Biophys Acta; 1980 Nov; 602(3):469-76. PubMed ID: 7437420 [TBL] [Abstract][Full Text] [Related]
10. The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships. Reizer J; Grossowicz N; Barenholz Y Biochim Biophys Acta; 1985 May; 815(2):268-80. PubMed ID: 3995029 [TBL] [Abstract][Full Text] [Related]
11. Temperature-induced homeoviscous adaptation of Chinese hamster ovary cells. Anderson RL; Minton KW; Li GC; Hahn GM Biochim Biophys Acta; 1981 Mar; 641(2):334-48. PubMed ID: 7213723 [TBL] [Abstract][Full Text] [Related]
12. Pseudomonas putida NCTC 10936 balances membrane fluidity in response to physical and chemical stress by changing the saturation degree and the trans/cis ratio of fatty acids. Loffhagen N; Härtig C; Babel W Biosci Biotechnol Biochem; 2004 Feb; 68(2):317-23. PubMed ID: 14981294 [TBL] [Abstract][Full Text] [Related]
13. Hyperthermic sensitivity and growth stage in Escherichia coli. Yatvin MB; Gipp JJ; Klessig DR; Dennis WH Radiat Res; 1986 Apr; 106(1):78-88. PubMed ID: 3515400 [TBL] [Abstract][Full Text] [Related]
14. Morphological and physiological changes induced by high hydrostatic pressure in exponential- and stationary-phase cells of Escherichia coli: relationship with cell death. Mañas P; Mackey BM Appl Environ Microbiol; 2004 Mar; 70(3):1545-54. PubMed ID: 15006777 [TBL] [Abstract][Full Text] [Related]
15. Physiological changes in Campylobacter jejuni on entry into stationary phase. Martínez-Rodriguez A; Mackey BM Int J Food Microbiol; 2005 May; 101(1):1-8. PubMed ID: 15878401 [TBL] [Abstract][Full Text] [Related]
16. The effects of growth temperature and growth phase on the inactivation of Listeria monocytogenes in whole milk subject to high pressure processing. Hayman MM; Anantheswaran RC; Knabel SJ Int J Food Microbiol; 2007 Apr; 115(2):220-6. PubMed ID: 17173999 [TBL] [Abstract][Full Text] [Related]
17. Heat resistance, membrane fluidity and sublethal damage in Staphylococcus aureus cells grown at different temperatures. Cebrián G; Condón S; Mañas P Int J Food Microbiol; 2019 Jan; 289():49-56. PubMed ID: 30199735 [TBL] [Abstract][Full Text] [Related]
18. Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freeze-drying resistance of Lactococcus lactis subsp. lactis TOMSC161. Velly H; Bouix M; Passot S; Penicaud C; Beinsteiner H; Ghorbal S; Lieben P; Fonseca F Appl Microbiol Biotechnol; 2015 Jan; 99(2):907-18. PubMed ID: 25343977 [TBL] [Abstract][Full Text] [Related]
19. Membrane fluidity and fatty acid comparisons in psychrotrophic and mesophilic strains of Acidithiobacillus ferrooxidans under cold growth temperatures. Mykytczuk NC; Trevors JT; Twine SM; Ferroni GD; Leduc LG Arch Microbiol; 2010 Dec; 192(12):1005-18. PubMed ID: 20852847 [TBL] [Abstract][Full Text] [Related]
20. An estimate of the minimum amount of fluid lipid required for the growth of Escherichia coli. Jackson MB; Cronan JE Biochim Biophys Acta; 1978 Oct; 512(3):472-9. PubMed ID: 361080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]