BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 12450840)

  • 21. Manipulation for plasmid elimination by transforming synthetic competitors diversifies lactococcus lactis starters applicable to food products.
    Kobayashi M; Nomura M; Kimoto H
    Biosci Biotechnol Biochem; 2007 Nov; 71(11):2647-54. PubMed ID: 17986766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative phenotypic and molecular genetic profiling of wild Lactococcus lactis subsp. lactis strains of the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes, isolated from starter-free cheeses made of raw milk.
    Fernández E; Alegría A; Delgado S; Martín MC; Mayo B
    Appl Environ Microbiol; 2011 Aug; 77(15):5324-35. PubMed ID: 21666023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon.
    MacCormick CA; Griffin HG; Gasson MJ
    FEMS Microbiol Lett; 1995 Mar; 127(1-2):105-9. PubMed ID: 7737470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of the industrial ethanol-producing strain of Saccharomyces cerevisiae able to ferment cellobiose and melibiose.
    Zhang L; Guo ZP; Ding ZY; Wang ZX; Shi GY
    Prikl Biokhim Mikrobiol; 2012; 48(2):243-8. PubMed ID: 22586919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermosensitive plasmid replication, temperature-sensitive host growth, and chromosomal plasmid integration conferred by Lactococcus lactis subsp. cremoris lactose plasmids in Lactococcus lactis subsp. lactis.
    Feirtag JM; Petzel JP; Pasalodos E; Baldwin KA; McKay LL
    Appl Environ Microbiol; 1991 Feb; 57(2):539-48. PubMed ID: 1901709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exopolysaccharide expression in Lactococcus lactis subsp. cremoris Ropy352: evidence for novel gene organization.
    Knoshaug EP; Ahlgren JA; Trempy JE
    Appl Environ Microbiol; 2007 Feb; 73(3):897-905. PubMed ID: 17122391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system.
    Gaspar P; Neves AR; Ramos A; Gasson MJ; Shearman CA; Santos H
    Appl Environ Microbiol; 2004 Mar; 70(3):1466-74. PubMed ID: 15006767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lactococcus lactis DPC5598, a plasmid-free derivative of a commercial starter, provides a valuable alternative host for culture improvement studies.
    Trotter M; Ross RP; Fitzgerald GF; Coffey A
    J Appl Microbiol; 2002; 93(1):134-43. PubMed ID: 12067382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics in Copy Numbers of Five Plasmids of a Dairy Lactococcus lactis Strain under Dairy-Related Conditions Including Near-Zero Growth Rates.
    van Mastrigt O; Lommers MMAN; de Vries YC; Abee T; Smid EJ
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80.
    Israelsen H; Madsen SM; Vrang A; Hansen EB; Johansen E
    Appl Environ Microbiol; 1995 Jul; 61(7):2540-7. PubMed ID: 7618865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering Lactococcus lactis for D-Lactic Acid Production from Starch.
    Aso Y; Hashimoto A; Ohara H
    Curr Microbiol; 2019 Oct; 76(10):1186-1192. PubMed ID: 31302724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular characterization of a second abortive phage resistance gene present in Lactococcus lactis subsp. lactis ME2.
    Durmaz E; Higgins DL; Klaenhammer TR
    J Bacteriol; 1992 Nov; 174(22):7463-9. PubMed ID: 1429469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lactococcus lactis Diversity in Undefined Mixed Dairy Starter Cultures as Revealed by Comparative Genome Analyses and Targeted Amplicon Sequencing of
    Frantzen CA; Kleppen HP; Holo H
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29222100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA sequence analysis of three Lactococcus lactis plasmids encoding phage resistance mechanisms.
    Boucher I; Emond E; Parrot M; Moineau S
    J Dairy Sci; 2001 Jul; 84(7):1610-20. PubMed ID: 11467810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector.
    Dickely F; Nilsson D; Hansen EB; Johansen E
    Mol Microbiol; 1995 Mar; 15(5):839-47. PubMed ID: 7596286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of a beta-galactosidase gene from Clostridium acetobutylicum in Lactococcus lactis subsp. lactis.
    Pillidge CJ; Pearce LE
    J Appl Bacteriol; 1991 Jul; 71(1):78-85. PubMed ID: 1910034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A food-grade approach for functional analysis and modification of native plasmids in Lactococcus lactis.
    Cotter PD; Hill C; Ross RP
    Appl Environ Microbiol; 2003 Jan; 69(1):702-6. PubMed ID: 12514066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of first-generation lactococcal integrative cloning vectors.
    McIntyre DA; Harlander SK
    Appl Microbiol Biotechnol; 1993 Nov; 40(2-3):348-55. PubMed ID: 7764390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker.
    Defoor E; Kryger MB; Martinussen J
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3645-3659. PubMed ID: 17975072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.
    van der Els S; James JK; Kleerebezem M; Bron PA
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29453254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.