BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 12450850)

  • 1. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms.
    Kostka JE; Dalton DD; Skelton H; Dollhopf S; Stucki JW
    Appl Environ Microbiol; 2002 Dec; 68(12):6256-62. PubMed ID: 12450850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehydrochlorination of 1,1,1-trichloroethane and pentachloroethane by microbially reduced ferruginous smectite.
    Cervini-Silva J; Kostka JE; Larson RA; Stucki JW; Wu J
    Environ Toxicol Chem; 2003 May; 22(5):1046-50. PubMed ID: 12729213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor.
    Kashefi K; Shelobolina ES; Elliott WC; Lovley DR
    Appl Environ Microbiol; 2008 Jan; 74(1):251-8. PubMed ID: 17981937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites.
    Hofstetter TB; Neumann A; Schwarzenbach RP
    Environ Sci Technol; 2006 Jan; 40(1):235-42. PubMed ID: 16433357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI).
    Petrie L; North NN; Dollhopf SL; Balkwill DL; Kostka JE
    Appl Environ Microbiol; 2003 Dec; 69(12):7467-79. PubMed ID: 14660400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abiotic and Biotic Reduction of Iodate Driven by
    Jiang Z; Cui M; Qian L; Jiang Y; Shi L; Dong Y; Li J; Wang Y
    Environ Sci Technol; 2023 Dec; 57(48):19817-19826. PubMed ID: 37972243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY.
    Turick CE; Tisa LS; Caccavo F
    Appl Environ Microbiol; 2002 May; 68(5):2436-44. PubMed ID: 11976119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of phyllosilicate-iron redox cycling microorganisms from an illite-smectite rich hydromorphic soil.
    Shelobolina E; Konishi H; Xu H; Benzine J; Xiong MY; Wu T; Blöthe M; Roden E
    Front Microbiol; 2012; 3():134. PubMed ID: 22493596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids.
    Liu G; Qiu S; Liu B; Pu Y; Gao Z; Wang J; Jin R; Zhou J
    Sci Rep; 2017 Mar; 7():45354. PubMed ID: 28358048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic considerations on the combined effect of electron shuttles and iron(III)-bearing clay mineral on Cr(VI) reduction by Shewanella oneidensis MR-1.
    Meng Y; Yuan Q; Luan F
    J Hazard Mater; 2023 Oct; 459():132144. PubMed ID: 37517234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor.
    Jones ME; Fennessey CM; DiChristina TJ; Taillefert M
    Environ Microbiol; 2010 Apr; 12(4):938-50. PubMed ID: 20089045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Culture-dependent and culture-independent methods reveal microbe-clay mineral interactions by dissimilatory iron-reducing bacteria in an integral oilfield.
    Dong H; Zhang F; Xu T; Liu Y; Du Y; Wang C; Liu T; Gao J; He Y; Wang X; Sun S; She Y
    Sci Total Environ; 2022 Sep; 840():156577. PubMed ID: 35688243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron mineral-humic acid complex enhanced Cr(VI) reduction by Shewanella oneidensis MR-1.
    Mohamed A; Yu L; Fang Y; Ashry N; Riahi Y; Uddin I; Dai K; Huang Q
    Chemosphere; 2020 May; 247():125902. PubMed ID: 31978657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral.
    Schaefer MV; Gorski CA; Scherer MM
    Environ Sci Technol; 2011 Jan; 45(2):540-5. PubMed ID: 21138293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiotic transformation of perchloroethylene in homogeneous dithionite solution and in suspensions of dithionite-treated clay minerals.
    Nzengung VA; Castillo RM; Gates WP; Mills GL
    Environ Sci Technol; 2001 Jun; 35(11):2244-51. PubMed ID: 11414025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium.
    Luan F; Gorski CA; Burgos WD
    Environ Sci Technol; 2014; 48(5):2750-8. PubMed ID: 24512199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of electron shuttle enhances Fe(III)-mediated reduction of Cr(VI) by Shewanella oneidensis MR-1.
    Liu X; Chu G; Du Y; Li J; Si Y
    World J Microbiol Biotechnol; 2019 Mar; 35(4):64. PubMed ID: 30923928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of soluble and insoluble iron forms by membrane fractions of Shewanella oneidensis grown under aerobic and anaerobic conditions.
    Ruebush SS; Brantley SL; Tien M
    Appl Environ Microbiol; 2006 Apr; 72(4):2925-35. PubMed ID: 16597999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.