BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12451107)

  • 1. Defining the caudal ventral striatum in primates: cellular and histochemical features.
    Fudge JL; Haber SN
    J Neurosci; 2002 Dec; 22(23):10078-82. PubMed ID: 12451107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amygdaloid inputs define a caudal component of the ventral striatum in primates.
    Fudge JL; Breitbart MA; McClain C
    J Comp Neurol; 2004 Aug; 476(4):330-47. PubMed ID: 15282709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amygdaloid projections to ventromedial striatal subterritories in the primate.
    Fudge JL; Kunishio K; Walsh P; Richard C; Haber SN
    Neuroscience; 2002; 110(2):257-75. PubMed ID: 11958868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insular and gustatory inputs to the caudal ventral striatum in primates.
    Fudge JL; Breitbart MA; Danish M; Pannoni V
    J Comp Neurol; 2005 Sep; 490(2):101-18. PubMed ID: 16052493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Afferent connections of the interstitial nucleus of the posterior limb of the anterior commissure and adjacent amygdalostriatal transition area in the rat.
    Shammah-Lagnado SJ; Alheid GF; Heimer L
    Neuroscience; 1999; 94(4):1097-123. PubMed ID: 10625051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous and compartmental distribution of zinc in the striatum and globus pallidus of the rat.
    Mengual E; Casanovas-Aguilar C; Pérez-Clausell J; Giménez-Amaya JM
    Neuroscience; 1995 Jun; 66(3):523-37. PubMed ID: 7644017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Topographic organization of the ventral striatum afferent projection from amygdaloid complex and hippocampal formation].
    Kunishio K; Ohmoto T; Haber SN
    No To Shinkei; 1996 Jun; 48(6):534-42. PubMed ID: 8703556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of rat subcortical forebrain organization: a study using histological techniques and multiple fluorescence labeling.
    Riedel A; Härtig W; Seeger G; Gärtner U; Brauer K; Arendt T
    J Chem Neuroanat; 2002 Feb; 23(2):75-104. PubMed ID: 11841914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axonal expression sites of tyrosine hydroxylase, calretinin- and calbindin-immunoreactivity in striato-pallidal and septal nuclei of the rat brain: a double-immunolabelling study.
    Seifert U; Härtig W; Grosche J; Brückner G; Riedel A; Brauer K
    Brain Res; 1998 Jun; 795(1-2):227-46. PubMed ID: 9622641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurochemical architecture of the human striatum.
    Holt DJ; Graybiel AM; Saper CB
    J Comp Neurol; 1997 Jul; 384(1):1-25. PubMed ID: 9214537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The striatal mosaic in primates: patterns of neuropeptide immunoreactivity differentiate the ventral striatum from the dorsal striatum.
    Martin LJ; Hadfield MG; Dellovade TL; Price DL
    Neuroscience; 1991; 43(2-3):397-417. PubMed ID: 1681464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input.
    Kunishio K; Haber SN
    J Comp Neurol; 1994 Dec; 350(3):337-56. PubMed ID: 7533796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interconnectivity between the amygdaloid complex and the amygdalostriatal transition area: a PHA-L study in rat.
    Jolkkonen E; Pikkarainen M; Kemppainen S; Pitkänen A
    J Comp Neurol; 2001 Feb; 431(1):39-58. PubMed ID: 11169989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amygdala projections to central amygdaloid nucleus subdivisions and transition zones in the primate.
    Fudge JL; Tucker T
    Neuroscience; 2009 Mar; 159(2):819-41. PubMed ID: 19272304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson's disease.
    Gibb WR
    Brain Res; 1992 May; 581(2):283-91. PubMed ID: 1382801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compartments in rat dorsal and ventral striatum revealed following injection of 6-hydroxydopamine into the ventral mesencephalon.
    Zahm DS
    Brain Res; 1991 Jun; 552(1):164-9. PubMed ID: 1717111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of overlap and segregation between insular cortical, intermediodorsal thalamic and basal amygdaloid afferents in the nucleus accumbens of the rat.
    Wright CI; Groenewegen HJ
    Neuroscience; 1996 Jul; 73(2):359-73. PubMed ID: 8783254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical Granularity Shapes the Organization of Afferent Paths to the Amygdala and Its Striatal Targets in Nonhuman Primate.
    McHale AC; Cho YT; Fudge JL
    J Neurosci; 2022 Feb; 42(8):1436-1453. PubMed ID: 34965977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of limbic system-associated membrane protein immunoreactivity in primate basal ganglia.
    Côté PY; Levitt P; Parent A
    Neuroscience; 1995 Nov; 69(1):71-81. PubMed ID: 8637634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical heterogeneity of the striosomal compartment in the human striatum.
    Prensa L; Giménez-Amaya JM; Parent A
    J Comp Neurol; 1999 Nov; 413(4):603-18. PubMed ID: 10495446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.