These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12451107)

  • 41. Amygdalostriatal projections in the rat. Topographical organization and fiber morphology shown using the lectin PHA-L as an anterograde tracer.
    Russchen FT; Price JL
    Neurosci Lett; 1984 Jun; 47(1):15-22. PubMed ID: 6087218
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ovarian hormone influences on the density of immunoreactivity for tyrosine hydroxylase and serotonin in the primate corpus striatum.
    Kritzer MF; Adler A; Bethea CL
    Neuroscience; 2003; 122(3):757-72. PubMed ID: 14622919
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Topographical organization of the projections from physiologically identified areas of the motor cortex to the striatum in the rat.
    Ebrahimi A; Pochet R; Roger M
    Neurosci Res; 1992 Jun; 14(1):39-60. PubMed ID: 1380687
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amygdalostriatal projections in reptiles: a tract-tracing study in the lizard Podarcis hispanica.
    Novejarque A; Lanuza E; Martínez-García F
    J Comp Neurol; 2004 Nov; 479(3):287-308. PubMed ID: 15457506
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neurochemical organization of inferior pulvinar complex in squirrel monkeys and macaques revealed by acetylcholinesterase histochemistry, calbindin and Cat-301 immunostaining, and Wisteria floribunda agglutinin binding.
    Gray D; Gutierrez C; Cusick CG
    J Comp Neurol; 1999 Jul; 409(3):452-68. PubMed ID: 10379830
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calbindin D28K and parvalbumin gene expression in rat embryonic ventral forebrain grafts.
    Shoham S; Baker WA; Norris PJ; Emson PC
    Exp Brain Res; 1998 Feb; 118(4):551-63. PubMed ID: 9504850
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell.
    Zahm DS; Heimer L
    J Comp Neurol; 1993 Jan; 327(2):220-32. PubMed ID: 8425943
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: anatomical evidence for cholinergic modulation of glutamatergic prefronto-striatal pathways.
    Alcantara AA; Mrzljak L; Jakab RL; Levey AI; Hersch SM; Goldman-Rakic PS
    J Comp Neurol; 2001 Jun; 434(4):445-60. PubMed ID: 11343292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adrenergic alpha2C-receptors reside in rat striatal GABAergic projection neurons: comparison of radioligand binding and immunohistochemistry.
    Holmberg M; Scheinin M; Kurose H; Miettinen R
    Neuroscience; 1999; 93(4):1323-33. PubMed ID: 10501456
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discrimination of striatopallidum and extended amygdala in the rat: a role for parvalbumin immunoreactive neurons?
    Zahm DS; Grosu S; Irving JC; Williams EA
    Brain Res; 2003 Jul; 978(1-2):141-54. PubMed ID: 12834908
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Correspondence between the dopamine islands and striosomes of the mammalian striatum.
    Graybiel AM
    Neuroscience; 1984 Dec; 13(4):1157-87. PubMed ID: 6152035
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections.
    Thompson L; Barraud P; Andersson E; Kirik D; Björklund A
    J Neurosci; 2005 Jul; 25(27):6467-77. PubMed ID: 16000637
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The amygdalostriatal projection in the rat--an anatomical study by anterograde and retrograde tracing methods.
    Kelley AE; Domesick VB; Nauta WJ
    Neuroscience; 1982 Mar; 7(3):615-30. PubMed ID: 7070669
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Striatal connections of the parietal association cortices in rhesus monkeys.
    Yeterian EH; Pandya DN
    J Comp Neurol; 1993 Jun; 332(2):175-97. PubMed ID: 8331211
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heterogeneous development of calbindin-D28K expression in the striatal matrix.
    Liu FC; Graybiel AM
    J Comp Neurol; 1992 Jun; 320(3):304-22. PubMed ID: 1351896
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The ventral striatum of the Syrian hamster.
    Johnson LR; Wood RI
    Ann N Y Acad Sci; 1999 Jun; 877():661-6. PubMed ID: 10415678
    [No Abstract]   [Full Text] [Related]  

  • 57. The relationship between ventral striatal efferent fibers and the distribution of peptide-positive woolly fibers in the forebrain of the rhesus monkey.
    Haber SN; Wolfe DP; Groenewegen HJ
    Neuroscience; 1990; 39(2):323-38. PubMed ID: 1708114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distribution of parvalbumin, calretinin, and calbindin-D(28k) immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid.
    Kemppainen S; Pitkänen A
    J Comp Neurol; 2000 Oct; 426(3):441-67. PubMed ID: 10992249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The organization of midbrain projections to the ventral striatum in the primate.
    Lynd-Balta E; Haber SN
    Neuroscience; 1994 Apr; 59(3):609-23. PubMed ID: 7516505
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: an anterograde tracing study in the cat.
    Room P; Russchen FT; Groenewegen HJ; Lohman AH
    J Comp Neurol; 1985 Dec; 242(1):40-55. PubMed ID: 4078047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.