These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12451448)

  • 1. Involvement of nitric oxide in myotoxicity produced by diisopropylphosphorofluoridate (DFP)-induced muscle hyperactivity.
    Gupta RC; Milatovic D; Dettbarn WD
    Arch Toxicol; 2002 Dec; 76(12):715-26. PubMed ID: 12451448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbofuran-induced oxidative stress in slow and fast skeletal muscles: prevention by memantine and atropine.
    Milatovic D; Gupta RC; Dekundy A; Montine TJ; Dettbarn WD
    Toxicology; 2005 Mar; 208(1):13-24. PubMed ID: 15664429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal oxidative injury and dendritic damage induced by carbofuran: protection by memantine.
    Gupta RC; Milatovic S; Dettbarn WD; Aschner M; Milatovic D
    Toxicol Appl Pharmacol; 2007 Mar; 219(2-3):97-105. PubMed ID: 17188316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide modulates high-energy phosphates in brain regions of rats intoxicated with diisopropylphosphorofluoridate or carbofuran: prevention by N-tert-butyl-alpha-phenylnitrone or vitamin E.
    Gupta RC; Milatovic D; Dettbarn WD
    Arch Toxicol; 2001 Aug; 75(6):346-56. PubMed ID: 11570692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diisopropylphosphorofluoridate-induced cholinergic hyperactivity and lipid peroxidation.
    Yang ZP; Dettbarn WD
    Toxicol Appl Pharmacol; 1996 May; 138(1):48-53. PubMed ID: 8658512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinergic and noncholinergic changes in skeletal muscles by carbofuran and methyl parathion.
    Gupta RC; Goad JT; Kadel WL
    J Toxicol Environ Health; 1994 Nov; 43(3):291-304. PubMed ID: 7966439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depletion of energy metabolites following acetylcholinesterase inhibitor-induced status epilepticus: protection by antioxidants.
    Gupta RC; Milatovic D; Dettbarn WD
    Neurotoxicology; 2001 Apr; 22(2):271-82. PubMed ID: 11405258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy related metabolic alterations in diaphragm muscle resulting from acute methomyl toxicity.
    Gupta RC; Goad JT; Kadel WL
    Neurotoxicology; 1994; 15(2):321-30. PubMed ID: 7991221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organophosphate-induced convulsions and prevention of neuropathological damages.
    Tuovinen K
    Toxicology; 2004 Mar; 196(1-2):31-9. PubMed ID: 15036754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the electrophysiological effects of two organophosphates, mipafox and ecothiopate, on mouse limb muscles.
    de Blaquière GE; Williams FM; Blain PG; Kelly SS
    Toxicol Appl Pharmacol; 1998 Jun; 150(2):350-60. PubMed ID: 9653066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of high-energy phosphates and their metabolites in protection of carbofuran-induced biochemical changes in diaphragm muscle by memantine.
    Gupta RC; Goad JT
    Arch Toxicol; 2000 Mar; 74(1):13-20. PubMed ID: 10817662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticholinesterase (DFP) toxicity antagonism by chronic donepezil: a potential nerve agent treatment.
    Janowsky DS; Davis JM; Overstreet DH
    Pharmacol Biochem Behav; 2005 Aug; 81(4):917-22. PubMed ID: 16054679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations of high-energy phosphate compounds in the skeletal muscles of rats intoxicated with diisopropylphosphorofluoridate (DFP) and Soman.
    Gupta RC; Dettbarn WD
    Fundam Appl Toxicol; 1987 Apr; 8(3):400-7. PubMed ID: 3569710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin trapping agent phenyl-N-tert-butylnitrone prevents diisopropylphosphorofluoridate-induced excitotoxicity in skeletal muscle of the rat.
    Milatovic D; Zivin M; Hustedt E; Dettbarn WD
    Neurosci Lett; 2000 Jan; 278(1-2):25-8. PubMed ID: 10643792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of parathion toxicity by glucose feeding: Is nitric oxide involved?
    Liu J; Gupta RC; Goad JT; Karanth S; Pope C
    Toxicol Appl Pharmacol; 2007 Mar; 219(2-3):106-13. PubMed ID: 17178140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection of DFP-induced oxidative damage and neurodegeneration by antioxidants and NMDA receptor antagonist.
    Zaja-Milatovic S; Gupta RC; Aschner M; Milatovic D
    Toxicol Appl Pharmacol; 2009 Oct; 240(2):124-31. PubMed ID: 19615394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased diisopropylfluorophosphate-induced toxicity in mu-opioid receptor knockout mice.
    Tien LT; Fan LW; Ma T; Loh HH; Ho IK
    J Neurosci Res; 2004 Oct; 78(2):259-67. PubMed ID: 15378609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide involves in carnosine-induced hyperactivity in chicks.
    Tomonaga S; Tachibana T; Takahashi H; Sato M; Denbow DM; Furuse M
    Eur J Pharmacol; 2005 Nov; 524(1-3):84-8. PubMed ID: 16236277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide synthase inhibition reduces O2 cost of force development and spares high-energy phosphates following contractions in pump-perfused rat hindlimb muscles.
    Baker DJ; Krause DJ; Howlett RA; Hepple RT
    Exp Physiol; 2006 May; 91(3):581-9. PubMed ID: 16469818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of toxicity and tolerance to diisopropylphosphorofluoridate at the neuromuscular junction of the rat.
    Gupta RC; Patterson GT; Dettbarn WD
    Toxicol Appl Pharmacol; 1986 Jul; 84(3):541-50. PubMed ID: 3726874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.