These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 12451788)

  • 1. [Technical flow design and optimization of a percutaneous implantable miniature blood pump].
    Brücker Ch; Dohmen R; Pfeffer JG; Buss F; Schröder W; Siess T; Schmitz-Rode T
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():114-7. PubMed ID: 12451788
    [No Abstract]   [Full Text] [Related]  

  • 2. Current status of the gyro centrifugal blood pump--development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project).
    Nosé Y; Furukawa K
    Artif Organs; 2004 Oct; 28(10):953-8. PubMed ID: 15385004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of a TinyPump system for pediatric CPB, ECMO, and circulatory assistance: hydrodynamic performances of the modified pump housing for implantable TinyPump.
    Yokoyama N; Suzuki M; Hoshi H; Ohuchi K; Fujimoto T; Takatani S
    ASAIO J; 2007; 53(6):742-6. PubMed ID: 18043159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an implantable undulation type ventricular assist device for control of organ circulation.
    Yambe T; Abe Y; Imachi K; Shiraishi Y; Shibata M; Yamaguchi T; Wang Q; Duan X; Liu H; Yoshizawa M; Tanaka A; Matsuki H; Sato F; Haga Y; Esashi M; Tabayashi K; Mitamura Y; Sasada H; Umezu M; Matsuda T; Nitta S
    Artif Organs; 2004 Oct; 28(10):940-4. PubMed ID: 15385002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technical requirements and limitations of miniaturized axial flow pumps for circulatory support.
    Reul H
    Cardiology; 1994; 84(3):187-93. PubMed ID: 8205568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow visualization in a centrifugal blood pump with an eccentric inlet port.
    Yamane T; Kodama T; Yamamoto Y; Shinohara T; Nosé Y
    Artif Organs; 2004 Jun; 28(6):564-70. PubMed ID: 15153149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.
    Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H
    Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Heart assist systems with integrated microsensors (HIM 2)].
    Legewie F; Nix C; Zippmann V; Spanier G; Eberhardt W; Oprea M
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():901-2. PubMed ID: 12465338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Five years experience with non-pulsatile flow].
    Grinda JM; Bricourt MO; Salvi S; Jouan J; Guillemain R; Deloche A; Fabiani JN
    Arch Mal Coeur Vaiss; 2005 Oct; 98(10):1008-12. PubMed ID: 16294548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Axial micro-pump system of assisted circulation].
    Shumakov VI; Tolpekin VE; Khaustov AI; Romanov OV; Melemuka IV
    Med Tekh; 1994; (5):3-5. PubMed ID: 7707892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Off-design considerations of the 50cc Penn State Ventricular Assist Device.
    Oley LA; Manning KB; Fontaine AA; Deutsch S
    Artif Organs; 2005 May; 29(5):378-86. PubMed ID: 15854213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A superconductive electromagnetic pump without any mechanical moving parts.
    Qian KX; Wang SS; Chu SH
    ASAIO J; 1993; 39(3):M649-53. PubMed ID: 8268618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a miniature implantable left ventricular assist device using CAD/CAM technology.
    Okamoto E; Hashimoto T; Mitamura Y
    J Artif Organs; 2003; 6(3):162-7. PubMed ID: 14598098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pediatric circulatory support: current strategies and future directions. Biventricular and univentricular mechanical assistance.
    Throckmorton AL; Chopski SG
    ASAIO J; 2008; 54(5):491-7. PubMed ID: 18812740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational fluid dynamics verified the advantages of streamlined impeller design in improving flow patterns and anti-haemolysis properties of centrifugal pump.
    Qian KX; Wang FQ; Zeng P; Ru WM; Yuan HY; Feng ZG
    J Med Eng Technol; 2006; 30(6):353-7. PubMed ID: 17060163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of implantable centrifugal pumps.
    Schwanda G; Losert U; Stöhr H; Thoma H; Wolner E
    Life Support Syst; 1983; 1 Suppl 1():25-31. PubMed ID: 6336422
    [No Abstract]   [Full Text] [Related]  

  • 17. Concept for a new hydrodynamic blood bearing for miniature blood pumps.
    Kink T; Reul H
    Artif Organs; 2004 Oct; 28(10):916-20. PubMed ID: 15384998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ten-year NEDO BVAD development program: moving forward to the clinical arena.
    Motomura T; Okubo H; Oda T; Ogawa D; Okahisa T; Igo S; Shinohara T; Yamamoto Y; Noguchi C; Ishizuka T; Okamoto E; Nosé Y
    ASAIO J; 2006; 52(4):378-85. PubMed ID: 16883116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnevad--the world's smallest magnetic-bearing turbo pump.
    Goldowsky M
    Artif Organs; 2004 Oct; 28(10):945-52. PubMed ID: 15385003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of the three-dimensional hemodynamics of the blood sac in the twin-pulse life-support system.
    Jeong GS; Shim EB; Ko HJ; Youn CH; Sun K; Goo Min B
    J Artif Organs; 2004; 7(4):174-80. PubMed ID: 15739049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.