These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 12451831)
1. Calculation of the dielectric properties of biological tissue using simple models of cell patches. Golombeck MA; Riedel CH; Dössel O Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():253-6. PubMed ID: 12451831 [TBL] [Abstract][Full Text] [Related]
2. Dielectric properties of biological tissue: variation with age. Gabriel C Bioelectromagnetics; 2005; Suppl 7():S12-8. PubMed ID: 16142779 [TBL] [Abstract][Full Text] [Related]
3. Modelling the electrical properties of tissue as a porous medium. Smye SW; Evans CJ; Robinson MP; Sleeman BD Phys Med Biol; 2007 Dec; 52(23):7007-22. PubMed ID: 18029990 [TBL] [Abstract][Full Text] [Related]
4. Numerical study of the electrical conductivity and polarization in a suspension of spherical cells. Ramos A; Suzuki DO; Marques JL Bioelectrochemistry; 2006 May; 68(2):213-7. PubMed ID: 16256446 [TBL] [Abstract][Full Text] [Related]
5. Improved circuit model of open-ended coaxial probe for measurement of the biological tissue dielectric properties between megahertz and gigahertz. Zhang L; Shi X; You F; Liu P; Dong X Physiol Meas; 2013 Oct; 34(10):N83-96. PubMed ID: 24021242 [TBL] [Abstract][Full Text] [Related]
6. The dielectric properties of skin and their influence on the delivery of tumor treating fields to the torso: a study combining in vivo measurements with numerical simulations. Hershkovich HS; Urman N; Yesharim O; Naveh A; Bomzon Z Phys Med Biol; 2019 Sep; 64(18):185014. PubMed ID: 31323651 [TBL] [Abstract][Full Text] [Related]
7. Intercomparison of methods for measurement of dielectric properties of biological tissues with a coaxial sensor at millimeter-wave frequencies. Sasaki K; Nishikata A; Watanabe S; Fujiwara O Phys Med Biol; 2018 Oct; 63(20):205008. PubMed ID: 30207985 [TBL] [Abstract][Full Text] [Related]
8. Dielectric properties of blood: an investigation of temperature dependence. Jaspard F; Nadi M Physiol Meas; 2002 Aug; 23(3):547-54. PubMed ID: 12214762 [TBL] [Abstract][Full Text] [Related]
9. An electrodeless system for measurement of liquid sample dielectric properties in radio frequency band. Hartwig V; Giovannetti G; Vanello N; Costantino M; Landini L; Benassi A Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4127-30. PubMed ID: 17946603 [TBL] [Abstract][Full Text] [Related]
10. Frequency-dependent anisotropic modeling and analysis using mfEIT: A computer simulation study. Zhang T; Li R; Potter T; Seo JK; Li G; Zhang Y Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2980. PubMed ID: 29521020 [TBL] [Abstract][Full Text] [Related]
11. Prediction of mechanical properties of human trabecular bone by electrical measurements. Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225 [TBL] [Abstract][Full Text] [Related]
12. Dielectric properties of skeletal muscle during ischemia in the frequency range from 50 Hz to 200 MHz. Schäfer M; Kirlum HJ; Schlegel C; Gebhard MM Ann N Y Acad Sci; 1999 Apr; 873():59-64. PubMed ID: 10372150 [TBL] [Abstract][Full Text] [Related]
13. Relating microscopic charge movement to macroscopic currents: the Ramo-Shockley theorem applied to ion channels. Nonner W; Peyser A; Gillespie D; Eisenberg B Biophys J; 2004 Dec; 87(6):3716-22. PubMed ID: 15465857 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy. Yao J; Wang L; Liu K; Wu H; Wang H; Huang J; Li J Electrophoresis; 2020 Sep; 41(16-17):1425-1432. PubMed ID: 31863489 [TBL] [Abstract][Full Text] [Related]
15. Electrical equivalent circuit for microstrip micro-plasma: control of EM propagation and numerical simulations. Mohamad A; Tân-Hoa V; Jacques D J Microw Power Electromagn Energy; 2012; 46(1):17-25. PubMed ID: 24427864 [TBL] [Abstract][Full Text] [Related]
16. Admittance models for open ended coaxial probes and their place in dielectric spectroscopy. Gabriel C; Chan TY; Grant EH Phys Med Biol; 1994 Dec; 39(12):2183-200. PubMed ID: 15551547 [TBL] [Abstract][Full Text] [Related]
17. Electrical Impedance Spectroscopy of plant cells in aqueous biological buffer solutions and their modelling using a unified electrical equivalent circuit over a wide frequency range: 4Hz to 20 GHz. Kadan-Jamal K; Sophocleous M; Jog A; Desagani D; Teig-Sussholz O; Georgiou J; Avni A; Shacham-Diamand Y Biosens Bioelectron; 2020 Nov; 168():112485. PubMed ID: 32896772 [TBL] [Abstract][Full Text] [Related]
18. Reconstruction of the Permittivity of Ex Vivo Animal Tissues in the Frequency Range 1-20 GHz Using a Water-Based Dielectric Model. Liporace F; Ciarleglio G; Santonicola MG; Cavagnaro M Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205031 [TBL] [Abstract][Full Text] [Related]
19. A human-phantom coupling experiment and a dispersive simulation model for investigating the variation of dielectric properties of biological tissues. Gomez-Tames J; Fukuhara Y; He S; Saito K; Ito K; Yu W Comput Biol Med; 2015 Jun; 61():144-9. PubMed ID: 25909642 [TBL] [Abstract][Full Text] [Related]
20. A semi-automatic method for developing an anthropomorphic numerical model of dielectric anatomy by MRI. Mazzurana M; Sandrini L; Vaccari A; Malacarne C; Cristoforetti L; Pontalti R Phys Med Biol; 2003 Oct; 48(19):3157-70. PubMed ID: 14579858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]