These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12451875)

  • 21. Cellular response of calcium phosphate bone substitute containing hydroxyapatite and tricalcium phosphate.
    Wu CL; Ou SF; Huang TS; Yang TS; Wang MS; Ou KL
    Implant Dent; 2014 Feb; 23(1):74-8. PubMed ID: 24445919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improvement in biocompatibility of ZrO2-Al2O3 nano-composite by addition of HA.
    Kong YM; Bae CJ; Lee SH; Kim HW; Kim HE
    Biomaterials; 2005 Feb; 26(5):509-17. PubMed ID: 15276359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro investigation of nanohydroxyapatite/poly(L-lactic acid) spindle composites used for bone tissue engineering.
    Yan W; Zhang CY; Xia LL; Zhang T; Fang QF
    J Mater Sci Mater Med; 2016 Aug; 27(8):130. PubMed ID: 27379628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reaction of sodium calcium borate glasses to form hydroxyapatite.
    Han X; Day DE
    J Mater Sci Mater Med; 2007 Sep; 18(9):1837-47. PubMed ID: 17486301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of Al2O3 reinforced hydroxyapatite.
    Ji H; Marquis PM
    Biomaterials; 1992; 13(11):744-8. PubMed ID: 1391395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphological and phase characterizations of retrieved calcium phosphate cement implants.
    Takagi S; Chow LC; Markovic M; Friedman CD; Costantino PD
    J Biomed Mater Res; 2001; 58(1):36-41. PubMed ID: 11152995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo osseointegration of nano-designed composite coatings on titanium implants.
    Facca S; Lahiri D; Fioretti F; Messadeq N; Mainard D; Benkirane-Jessel N; Agarwal A
    ACS Nano; 2011 Jun; 5(6):4790-9. PubMed ID: 21591801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds.
    Sprio S; Tampieri A; Celotti G; Landi E
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):147-55. PubMed ID: 19627818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stability of hydroxyapatite while processing short-fibre reinforced hydroxyapatite ceramics.
    Knepper M; Moricca S; Milthorpe BK
    Biomaterials; 1997 Dec; 18(23):1523-9. PubMed ID: 9430334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of alumina on microstructure and compressive strength of a porous silicated hydroxyapatite.
    Rabiee SM; Ravarian R; Mehmanchi M; Khoshakhlagh P; Azizian M
    J Appl Biomater Funct Mater; 2014 Sep; 12(2):102-6. PubMed ID: 23413129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Four calcium phosphate ceramics as bone substitutes for non-weight-bearing.
    Kitsugi T; Yamamuro T; Nakamura T; Kotani S; Kokubo T; Takeuchi H
    Biomaterials; 1993 Feb; 14(3):216-24. PubMed ID: 8386554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics.
    Lin K; Chang J; Shen R
    Biomed Mater; 2009 Dec; 4(6):065009. PubMed ID: 19966383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone-bonding ability of a hydroxyapatite coated zirconia-alumina nanocomposite with a microporous surface.
    Takemoto M; Fujibayashi S; Neo M; Suzuki J; Kokubo T; Nakamura T
    J Biomed Mater Res A; 2006 Sep; 78(4):693-701. PubMed ID: 16739176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium phosphate materials containing alumina: Raman spectroscopical, histological, and ultrastructural study.
    Bertoluzza A; Simoni R; Tinti A; Morocutti M; Ottani V; Ruggeri A
    J Biomed Mater Res; 1991 Jan; 25(1):23-38. PubMed ID: 2019610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glass reinforced hydroxyapatite for hard tissue surgery--part 1: Mechanical properties.
    Georgiou G; Knowles JC
    Biomaterials; 2001 Oct; 22(20):2811-5. PubMed ID: 11545316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in microstructural characteristics of dense HA and HA coating.
    Ogiso M; Yamashita Y; Matsumoto T
    J Biomed Mater Res; 1998 Aug; 41(2):296-303. PubMed ID: 9638535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of phase composition in hydroxyapatite/tetracalcium phosphate biphasic thin coatings for biomedical applications.
    Kim H; Camata RP; Vohra YK; Lacefield WR
    J Mater Sci Mater Med; 2005 Oct; 16(10):961-6. PubMed ID: 16167104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of plasma-sprayed hydroxyapatite coatings and hydroxyapatite/tricalcium phosphate composite coatings: in vivo study.
    Lee TM; Wang BC; Yang YC; Chang E; Yang CY
    J Biomed Mater Res; 2001 Jun; 55(3):360-7. PubMed ID: 11255189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate.
    Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H
    Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique.
    Liu Q; Ding J; Mante FK; Wunder SL; Baran GR
    Biomaterials; 2002 Aug; 23(15):3103-11. PubMed ID: 12102181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.