BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12451906)

  • 1. The impact of material characteristics on the mechanical properties of a poly(L-lactide) coronary stent.
    Grabow N; Martin H; Schmitz KP
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():503-5. PubMed ID: 12451906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future Balloon-Expandable Stents: High or Low-Strength Materials?
    Khalilimeybodi A; Alishzadeh Khoei A; Sharif-Kashani B
    Cardiovasc Eng Technol; 2020 Apr; 11(2):188-204. PubMed ID: 31836964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Design strategy for balloon-expandable stents made of biodegradable polymers using finite element analysis].
    Schlun M; Martin H; Grabow N; Schmitz KP
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():831-4. PubMed ID: 12465316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Finite element simulation of the dilatation of coronary vascular implants].
    Hintner M; Stur S
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():768-9. PubMed ID: 12465298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational analysis of the radial mechanical performance of PLLA coronary artery stents.
    Pauck RG; Reddy BD
    Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury.
    Karimi A; Razaghi R; Shojaei A; Navidbakhsh M
    Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biodegradable slotted tube stent based on poly(L-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion.
    Grabow N; Bünger CM; Schultze C; Schmohl K; Martin DP; Williams SF; Sternberg K; Schmitz KP
    Ann Biomed Eng; 2007 Dec; 35(12):2031-8. PubMed ID: 17846893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery.
    Liang DK; Yang DZ; Qi M; Wang WQ
    Int J Cardiol; 2005 Oct; 104(3):314-8. PubMed ID: 16186062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration.
    Martin D; Boyle F
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1161-75. PubMed ID: 23696255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the stent expansion in a stenosed artery using finite element method: application to stent versus stent study.
    Imani SM; Goudarzi AM; Ghasemi SE; Kalani A; Mahdinejad J
    Proc Inst Mech Eng H; 2014 Oct; 228(10):996-1004. PubMed ID: 25406228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans.
    Tamai H; Igaki K; Kyo E; Kosuga K; Kawashima A; Matsui S; Komori H; Tsuji T; Motohara S; Uehata H
    Circulation; 2000 Jul; 102(4):399-404. PubMed ID: 10908211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents.
    Wang Q; Fang G; Zhao Y; Wang G; Cai T
    J Mech Behav Biomed Mater; 2017 Jan; 65():415-427. PubMed ID: 27643678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical behavior of coronary stents investigated through the finite element method.
    Migliavacca F; Petrini L; Colombo M; Auricchio F; Pietrabissa R
    J Biomech; 2002 Jun; 35(6):803-11. PubMed ID: 12021000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Analysis of the Utilisation of the Shape Memory Effect and Balloon Expansion in Fully Polymeric Stent Deployment.
    Bobel AC; McHugh PE
    Cardiovasc Eng Technol; 2018 Mar; 9(1):60-72. PubMed ID: 29243163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical Impact of Wrong Positioning of a Dedicated Stent for Coronary Bifurcations: A Virtual Bench Testing Study.
    Chiastra C; Grundeken MJ; Collet C; Wu W; Wykrzykowska JJ; Pennati G; Dubini G; Migliavacca F
    Cardiovasc Eng Technol; 2018 Sep; 9(3):415-426. PubMed ID: 29777394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural optimization and finite element analysis of poly-l-lactide acid coronary stent with improved radial strength and acute recoil rate.
    Song K; Bi Y; Zhao H; Wu T; Xu F; Zhao G
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2754-2764. PubMed ID: 32154984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue life analysis and experimental verification of coronary stent.
    Li J; Luo Q; Xie Z; Li Y; Zeng Y
    Heart Vessels; 2010 Jul; 25(4):333-7. PubMed ID: 20676843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histopathological comparison of biodegradable polymer and permanent polymer based sirolimus eluting stents in a porcine model of coronary stent implantation.
    Koppara T; Joner M; Bayer G; Steigerwald K; Diener T; Wittchow E
    Thromb Haemost; 2012 Jun; 107(6):1161-71. PubMed ID: 22535188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.