These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12452418)

  • 21. [The spectral analysis of heart rate variability. A comparative study between nonparametric and parametric spectral analysis in short series].
    Costa O; Lago P; Rocha AP; Freitas J; Puig J; Carvalho MJ; de Freitas AF
    Rev Port Cardiol; 1995 Sep; 14(9):621-6. PubMed ID: 7576762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm.
    Tarvainen MP; Georgiadis SD; Ranta-Aho PO; Karjalainen PA
    Physiol Meas; 2006 Mar; 27(3):225-39. PubMed ID: 16462010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of mean frequency and variance of ultrasonic Doppler signal by using second-order autoregressive model.
    Ahn YB; Park SB
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):172-82. PubMed ID: 18267572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of the coupling between RTapex and RR interval as an index of temporal dispersion of ventricular repolarization.
    Lombardi F; Colombo A; Porta A; Baselli G; Cerutti S; Fiorentini C
    Pacing Clin Electrophysiol; 1998 Nov; 21(11 Pt 2):2396-400. PubMed ID: 9825355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ability of several short-term measures of RR variability to predict mortality after myocardial infarction.
    Bigger JT; Fleiss JL; Rolnitzky LM; Steinman RC
    Circulation; 1993 Sep; 88(3):927-34. PubMed ID: 8353919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Hurst exponent estimator based on autoregressive power spectrum estimation with order selection.
    Chang YC; Lai LC; Chen LH; Chang CM; Chueh CC
    Biomed Mater Eng; 2014; 24(1):1041-51. PubMed ID: 24211995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cardiac Doppler blood-flow signal analysis. Part 2. Time/frequency representation based on autoregressive modelling.
    Guo Z; Durand LG; Allard L; Cloutier G; Lee HC; Langlois YE
    Med Biol Eng Comput; 1993 May; 31(3):242-8. PubMed ID: 8412377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low frequency component in systolic arterial pressure variability in patients with persistent atrial fibrillation.
    Mainardi L; Corino V; Belletti S; Terranova P; Lombardi F
    Auton Neurosci; 2009 Dec; 151(2):147-53. PubMed ID: 19596612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction.
    Bigger JT; Fleiss JL; Steinman RC; Rolnitzky LM; Schneider WJ; Stein PK
    Circulation; 1995 Apr; 91(7):1936-43. PubMed ID: 7895350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wavelet-based estimation of generalized fractional process.
    Gonzaga A; Kawanaka A
    Methods Inf Med; 2007; 46(2):117-20. PubMed ID: 17347739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An improved windowing technique for heart rate variability power spectrum estimation.
    Singh D; Vinod K; Saxena SC; Deepak KK
    J Med Eng Technol; 2005; 29(2):95-101. PubMed ID: 15804859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abnormalities in beat to beat complexity of heart rate dynamics in patients with a previous myocardial infarction.
    Mäkikallio TH; Seppänen T; Niemelä M; Airaksinen KE; Tulppo M; Huikuri HV
    J Am Coll Cardiol; 1996 Oct; 28(4):1005-11. PubMed ID: 8837582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A generalized least absolute deviation method for parameter estimation of autoregressive signals.
    Xia Y; Kamel MS
    IEEE Trans Neural Netw; 2008 Jan; 19(1):107-18. PubMed ID: 18269942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing multiscale complexity of short heart rate variability series through a model-based linear approach.
    Porta A; Bari V; Ranuzzi G; De Maria B; Baselli G
    Chaos; 2017 Sep; 27(9):093901. PubMed ID: 28964147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting mortality after myocardial infarction from the response of RR variability to antiarrhythmic drug therapy.
    Bigger JT; Rolnitzky LM; Steinman RC; Fleiss JL
    J Am Coll Cardiol; 1994 Mar; 23(3):733-40. PubMed ID: 7509355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A nonstationarity test for the spectral analysis of physiological time series with an application to respiratory sinus arrhythmia.
    Weber EJ; Molenaar PC; van der Molen MW
    Psychophysiology; 1992 Jan; 29(1):55-65. PubMed ID: 1609027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Testing for time-localized coherence in bivariate data.
    Sheppard LW; Stefanovska A; McClintock PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046205. PubMed ID: 22680554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of novel spectral estimator for fractionated electrogram analysis is helpful to discern atrial fibrillation type.
    Ciaccio EJ; Biviano AB; Garan H
    Comput Methods Programs Biomed; 2014 Nov; 117(2):343-50. PubMed ID: 25035244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying electrocardiogram RT-RR variability interactions.
    Porta A; Baselli G; Caiani E; Malliani A; Lombardi F; Cerutti S
    Med Biol Eng Comput; 1998 Jan; 36(1):27-34. PubMed ID: 9614745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An efficient estimator of Hurst exponent through an autoregressive model with an order selected by data induction.
    Chang YC
    Biomed Mater Eng; 2014; 24(6):3557-68. PubMed ID: 25227069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.