These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12452653)

  • 1. Modeling of single-step and multistep adsorption isotherms of organic pesticides on soil.
    Konda LN; Czinkota I; Füleky G; Morovján G
    J Agric Food Chem; 2002 Dec; 50(25):7326-31. PubMed ID: 12452653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcritical water extraction to evaluate desorption behavior of organic pesticides in soil.
    Konda LN; Füleky G; Morovján G
    J Agric Food Chem; 2002 Apr; 50(8):2338-43. PubMed ID: 11929294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil.
    Nemeth-Konda L; Füleky G; Morovjan G; Csokan P
    Chemosphere; 2002 Aug; 48(5):545-52. PubMed ID: 12146633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of coexistence of carbendazim, atrazine, and imidacloprid on their adsorption, desorption, and mobility in soil.
    Jin X; Ren J; Wang B; Lu Q; Yu Y
    Environ Sci Pollut Res Int; 2013 Sep; 20(9):6282-9. PubMed ID: 23589247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation of pesticide sorption isotherm in soil at the catchment scale.
    Coquet Y
    Pest Manag Sci; 2003 Jan; 59(1):69-78. PubMed ID: 12558101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of two methods for estimation of soil sorption for imidacloprid and carbofuran.
    Yazgan MS; Wilkins RM; Sykas C; Hoque E
    Chemosphere; 2005 Sep; 60(9):1325-31. PubMed ID: 16018904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of acetochlor, S-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina.
    Bedmar F; Daniel PE; Costa JL; Giménez D
    Environ Toxicol Chem; 2011 Sep; 30(9):1990-6. PubMed ID: 21692102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine.
    Jin J; Kang M; Sun K; Pan Z; Wu F; Xing B
    Sci Total Environ; 2016 Apr; 550():504-513. PubMed ID: 26845186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems.
    Mandal A; Singh N
    Int J Hyg Environ Health; 2017 May; 220(3):637-645. PubMed ID: 28433639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil thin-layer chromatography and pesticide mobility through soil microstructures. New technical approach.
    Ravanel P; Liégeois MH; Chevallier D; Tissut M
    J Chromatogr A; 1999 Dec; 864(1):145-54. PubMed ID: 10630879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and isotherm error optimization studies for adsorption of atrazine and imidacloprid on bark of Eucalyptus tereticornis L.
    Mandal A; Singh N
    J Environ Sci Health B; 2016; 51(3):192-203. PubMed ID: 26674296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pesticide leaching from two Swedish topsoils of contrasting texture amended with biochar.
    Larsbo M; Löfstrand E; de Veer Dv; Ulén B
    J Contam Hydrol; 2013 Apr; 147():73-81. PubMed ID: 23500841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils.
    Boivin A; Cherrier R; Schiavon M
    Chemosphere; 2005 Nov; 61(5):668-76. PubMed ID: 16219503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis.
    Narayanan N; Gupta S; Gajbhiye VT; Manjaiah KM
    Chemosphere; 2017 Apr; 173():502-511. PubMed ID: 28131920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of organophosphorus pesticides in tropical soils: The case of karst landscape of northwestern Yucatan.
    Alfonso LF; Germán GV; María Del Carmen PC; Hossein G
    Chemosphere; 2017 Jan; 166():292-299. PubMed ID: 27700995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agro-waste biosorbents: Effect of physico-chemical properties on atrazine and imidacloprid sorption.
    Mandal A; Singh N; Nain L
    J Environ Sci Health B; 2017 Sep; 52(9):671-682. PubMed ID: 28679066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetochlor as a soil pollutant.
    Lengyel Z; Földényi R
    Environ Sci Pollut Res Int; 2003; 10(1):13-8. PubMed ID: 12635953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.
    Kandil MM; El-Aswad AF; Koskinen WC
    J Environ Sci Health B; 2015; 50(7):473-83. PubMed ID: 25996811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetics of sorption by retarded diffusion into soil aggregate pores.
    Villaverde J; van Beinum W; Beulke S; Brown CD
    Environ Sci Technol; 2009 Nov; 43(21):8227-32. PubMed ID: 19924948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and isotherm modeling of azoxystrobin and imidacloprid retention in biomixtures.
    Kumari A; Mandal A; Singh N
    J Environ Sci Health B; 2019; 54(2):118-128. PubMed ID: 30285549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.