BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12452666)

  • 1. Stabilities of daidzin, glycitin, genistin, and generation of derivatives during heating.
    Xu Z; Wu Q; Godber JS
    J Agric Food Chem; 2002 Dec; 50(25):7402-6. PubMed ID: 12452666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat and pH effects on the conjugated forms of genistin and daidzin isoflavones.
    Mathias K; Ismail B; Corvalan CM; Hayes KD
    J Agric Food Chem; 2006 Oct; 54(20):7495-502. PubMed ID: 17002413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study on reduction of bone loss and lipid metabolism abnormality in ovariectomized rats by soy isoflavones, daidzin, genistin, and glycitin.
    Uesugi T; Toda T; Tsuji K; Ishida H
    Biol Pharm Bull; 2001 Apr; 24(4):368-72. PubMed ID: 11305597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus.
    Yeom SJ; Kim BN; Kim YS; Oh DK
    J Agric Food Chem; 2012 Feb; 60(6):1535-41. PubMed ID: 22251001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the profile of genistein, daidzein, and their conjugates during thermal processing of tofu.
    Grün IU; Adhikari K; Li C; Li Y; Lin B; Zhang J; Fernando LN
    J Agric Food Chem; 2001 Jun; 49(6):2839-43. PubMed ID: 11409975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of succinyl genistin and succinyl daidzin by Bacillus species.
    Park CU; Jeong MK; Park MH; Yeu J; Park MS; Kim MJ; Ahn SM; Chang PS; Lee J
    J Food Sci; 2010; 75(1):C128-33. PubMed ID: 20492143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The conversion and deglycosylation of isoflavones and anthocyanins in black soymilk process.
    Hsiao YH; Hsieh JF
    Food Chem; 2018 Sep; 261():8-14. PubMed ID: 29739609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid-resolution HPLC with spectrometric detection for the determination and identification of isoflavones in soy preparations and plant extracts.
    Klejdus B; Vacek J; Benesová L; Kopecký J; Lapcík O; Kubán V
    Anal Bioanal Chem; 2007 Dec; 389(7-8):2277-85. PubMed ID: 17899029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing time and temperature of enzymatic conversion of isoflavone glucosides to aglycones in soy germ flour.
    Tipkanon S; Chompreeda P; Haruthaithanasan V; Suwonsichon T; Prinyawiwatkul W; Xu Z
    J Agric Food Chem; 2010 Nov; 58(21):11340-5. PubMed ID: 20942463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isoflavones of the soybean components and the effect of germination time in the cotyledons and embryonic axis.
    Quinhone Júnior A; Ida EI
    J Agric Food Chem; 2014 Aug; 62(33):8452-9. PubMed ID: 25070365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of isoflavones in soy milk stored at elevated and ambient temperatures.
    Eisen B; Ungar Y; Shimoni E
    J Agric Food Chem; 2003 Apr; 51(8):2212-5. PubMed ID: 12670158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of isoflavones in soy bits by fast column high-performance liquid chromatography coupled with UV-visible diode-array detection.
    Klejdus B; Mikelová R; Petrlová J; Potesil D; Adam V; Stiborová M; Hodek P; Vacek J; Kizek R; Kubán V
    J Chromatogr A; 2005 Aug; 1084(1-2):71-9. PubMed ID: 16114238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast simultaneous determination of free and conjugated isoflavones in soy milk by UHPLC-UV.
    Toro-Funes N; Odriozola-Serrano I; Bosch-Fusté J; Latorre-Moratalla ML; Veciana-Nogués MT; Izquierdo-Pulido M; Vidal-Carou MC
    Food Chem; 2012 Dec; 135(4):2832-8. PubMed ID: 22980879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of the functional value of green soybean (edamame) using germination and tempe fermentation: A comparative metabolomics study.
    Iman MN; Irdiani R; Rahmawati D; Fukusaki E; Putri SP
    J Biosci Bioeng; 2023 Sep; 136(3):205-212. PubMed ID: 37331843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced bioavailability of soy isoflavones by complexation with beta-cyclodextrin in rats.
    Lee SH; Kim YH; Yu HJ; Cho NS; Kim TH; Kim DC; Chung CB; Hwang YI; Kim KH
    Biosci Biotechnol Biochem; 2007 Dec; 71(12):2927-33. PubMed ID: 18071265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of isoflavone isomers in steamed black soybeans and black soybean koji stored under different conditions.
    Huang RY; Chou CC
    J Agric Food Chem; 2009 Mar; 57(5):1927-32. PubMed ID: 19256558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of six isoflavones from Semen sojae praeparatum by preparative HPLC.
    Qu LP; Fan GR; Peng JY; Mi HM
    Fitoterapia; 2007 Apr; 78(3):200-4. PubMed ID: 17343991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of isoflavones in soy and selected foods containing soy by extraction, saponification, and liquid chromatography: collaborative study.
    Klump SP; Allred MC; MacDonald JL; Ballam JM
    J AOAC Int; 2001; 84(6):1865-83. PubMed ID: 11767157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effects of a major soy isoflavone, genistein, on human DNA topoisomerase II activity and cancer cell proliferation.
    Mizushina Y; Shiomi K; Kuriyama I; Takahashi Y; Yoshida H
    Int J Oncol; 2013 Oct; 43(4):1117-24. PubMed ID: 23900272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding hypocholesterolemic activity of soy isoflavones: Completing the puzzle through computational simulations.
    Hermanto FE; Warsito W; Rifa'i M; Widodo N
    J Biomol Struct Dyn; 2023 Nov; 41(19):9931-9937. PubMed ID: 36443895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.