These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 12452707)
1. Tripeptides adopt stable structures in water. A combined polarized visible Raman, FTIR, and VCD spectroscopy study. Eker F; Cao X; Nafie L; Schweitzer-Stenner R J Am Chem Soc; 2002 Dec; 124(48):14330-41. PubMed ID: 12452707 [TBL] [Abstract][Full Text] [Related]
2. Dihedral angles of tripeptides in solution directly determined by polarized Raman and FTIR spectroscopy. Schweitzer-Stenner R Biophys J; 2002 Jul; 83(1):523-32. PubMed ID: 12080139 [TBL] [Abstract][Full Text] [Related]
3. The conformation of tetraalanine in water determined by polarized Raman, FT-IR, and VCD spectroscopy. Schweitzer-Stenner R; Eker F; Griebenow K; Cao X; Nafie LA J Am Chem Soc; 2004 Mar; 126(9):2768-76. PubMed ID: 14995194 [TBL] [Abstract][Full Text] [Related]
4. Tripeptides with ionizable side chains adopt a perturbed polyproline II structure in water. Eker F; Griebenow K; Cao X; Nafie LA; Schweitzer-Stenner R Biochemistry; 2004 Jan; 43(3):613-21. PubMed ID: 14730965 [TBL] [Abstract][Full Text] [Related]
5. Dihedral angles of trialanine in D2O determined by combining FTIR and polarized visible Raman spectroscopy. Schweitzer-Stenner R; Eker F; Huang Q; Griebenow K J Am Chem Soc; 2001 Oct; 123(39):9628-33. PubMed ID: 11572684 [TBL] [Abstract][Full Text] [Related]
6. The structure of tri-proline in water probed by polarized Raman, Fourier transform infrared, vibrational circular dichroism, and electric ultraviolet circular dichroism spectroscopy. Schweitzer-Stenner R; Eker F; Perez A; Griebenow K; Cao X; Nafie LA Biopolymers; 2003; 71(5):558-68. PubMed ID: 14635096 [TBL] [Abstract][Full Text] [Related]
7. Conformational manifold of alpha-aminoisobutyric acid (Aib) containing alanine-based tripeptides in aqueous solution explored by vibrational spectroscopy, electronic circular dichroism spectroscopy, and molecular dynamics simulations. Schweitzer-Stenner R; Gonzales W; Bourne GT; Feng JA; Marshall GR J Am Chem Soc; 2007 Oct; 129(43):13095-109. PubMed ID: 17918837 [TBL] [Abstract][Full Text] [Related]
8. Conformations of alanine-based peptides in water probed by FTIR, Raman, vibrational circular dichroism, electronic circular dichroism, and NMR spectroscopy. Schweitzer-Stenner R; Measey T; Kakalis L; Jordan F; Pizzanelli S; Forte C; Griebenow K Biochemistry; 2007 Feb; 46(6):1587-96. PubMed ID: 17279623 [TBL] [Abstract][Full Text] [Related]
9. Preferred peptide backbone conformations in the unfolded state revealed by the structure analysis of alanine-based (AXA) tripeptides in aqueous solution. Eker F; Griebenow K; Cao X; Nafie LA; Schweitzer-Stenner R Proc Natl Acad Sci U S A; 2004 Jul; 101(27):10054-9. PubMed ID: 15220481 [TBL] [Abstract][Full Text] [Related]
10. Simulated IR, isotropic and anisotropic Raman, and vibrational circular dichroism amide I band profiles of stacked β-sheets. Schweitzer-Stenner R J Phys Chem B; 2012 Apr; 116(14):4141-53. PubMed ID: 22390232 [TBL] [Abstract][Full Text] [Related]
11. Distribution of conformations sampled by the central amino acid residue in tripeptides inferred from amide I band profiles and NMR scalar coupling constants. Schweitzer-Stenner R J Phys Chem B; 2009 Mar; 113(9):2922-32. PubMed ID: 19243204 [TBL] [Abstract][Full Text] [Related]
12. Cationic oligopeptides with the repeating sequence L-lysyl-L-alanyl-L-alanine: conformational and thermal stability study using optical spectroscopic methods. Setnicka V; Hlavácek J; Urbanová M J Pept Sci; 2009 Aug; 15(8):533-9. PubMed ID: 19579212 [TBL] [Abstract][Full Text] [Related]
13. The amide III vibrational circular dichroism band as a probe to detect conformational preferences of alanine dipeptide in water. Mirtič A; Merzel F; Grdadolnik J Biopolymers; 2014 Jul; 101(7):814-8. PubMed ID: 24436080 [TBL] [Abstract][Full Text] [Related]
14. pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study. Toal S; Meral D; Verbaro D; Urbanc B; Schweitzer-Stenner R J Phys Chem B; 2013 Apr; 117(14):3689-706. PubMed ID: 23448349 [TBL] [Abstract][Full Text] [Related]
15. Ionized trilysine: a model system for understanding the nonrandom structure of poly-L-lysine and lysine-containing motifs in proteins. Verbaro DJ; Mathieu D; Toal SE; Schwalbe H; Schweitzer-Stenner R J Phys Chem B; 2012 Jul; 116(28):8084-94. PubMed ID: 22712805 [TBL] [Abstract][Full Text] [Related]
16. Envisaging Structural Insight of a Terminally Protected Proline Dipeptide by Raman Spectroscopy and Density Functional Theory Analyses. Das S; Pal U; Chatterjee M; Pramanik SK; Banerji B; Maiti NC J Phys Chem A; 2016 Dec; 120(49):9829-9840. PubMed ID: 27973793 [TBL] [Abstract][Full Text] [Related]
17. Stable conformations of tripeptides in aqueous solution studied by UV circular dichroism spectroscopy. Eker F; Griebenow K; Schweitzer-Stenner R J Am Chem Soc; 2003 Jul; 125(27):8178-85. PubMed ID: 12837087 [TBL] [Abstract][Full Text] [Related]
18. Triaspartate: a model system for conformationally flexible DDD motifs in proteins. Duitch L; Toal S; Measey TJ; Schweitzer-Stenner R J Phys Chem B; 2012 May; 116(17):5160-71. PubMed ID: 22435395 [TBL] [Abstract][Full Text] [Related]
19. Intrinsic propensities of amino acid residues in GxG peptides inferred from amide I' band profiles and NMR scalar coupling constants. Hagarman A; Measey TJ; Mathieu D; Schwalbe H; Schweitzer-Stenner R J Am Chem Soc; 2010 Jan; 132(2):540-51. PubMed ID: 20014772 [TBL] [Abstract][Full Text] [Related]
20. Noncovalent interactions of peptides with porphyrins in aqueous solution: conformational study using vibrational CD spectroscopy. Urbanová M; Setnicka V; Král V; Volka K Biopolymers; 2001; 60(4):307-16. PubMed ID: 11774233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]