BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 12452708)

  • 1. Mimicking biological electron transport in sol-gel glass: photoinduced electron transfer from zinc cytochrome C to plastocyanin or cytochrome C mediated by mobile inorganic complexes.
    Pletneva EV; Crnogorac MM; Kostić NM
    J Am Chem Soc; 2002 Dec; 124(48):14342-54. PubMed ID: 12452708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the rates and the activation parameters for the forward reaction between the triplet state of zinc cytochrome c and cupriplastocyanin and the back reaction between the zinc cytochrome c cation radical and cuproplastocyanin.
    Ivković-Jensen MM; Ullmann GM; Crnogorac MM; Ejdebäck M; Young S; Hansson O; Kostić NM
    Biochemistry; 1999 Feb; 38(5):1589-97. PubMed ID: 9931026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enforced interaction of one molecule of plastocyanin with two molecules of cytochrome c and an electron-transfer reaction involving the hydrophobic patch on the plastocyanin surface.
    Qin L; Kostić NM
    Biochemistry; 1996 Mar; 35(11):3379-86. PubMed ID: 8639487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metalloprotein complexes for the study of electron-transfer reactions. Characterization of diprotein complexes obtained by covalent cross-linking of cytochrome c and plastocyanin with a carbodiimide.
    Zhou JS; Brothers HM; Neddersen JP; Peerey LM; Cotton TM; Kostić NM
    Bioconjug Chem; 1992; 3(5):382-90. PubMed ID: 1329988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of single and double mutations in plastocyanin on the rate constant and activation parameters for the rearrangement gating the electron-transfer reaction between the triplet state of zinc cytochrome c and cupriplastocyanin.
    Ivković-Jensen MM; Ullmann GM; Young S; Hansson O; Crnogorac MM; Ejdebäck M; Kostić NM
    Biochemistry; 1998 Jun; 37(26):9557-69. PubMed ID: 9649339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of temperature on the kinetics of the gated electron-transfer reaction between zinc cytochrome c and plastocyanin. Analysis of configurational fluctuation of the diprotein complex.
    Ivković-Jensen MM; Kostić NM
    Biochemistry; 1996 Nov; 35(47):15095-106. PubMed ID: 8942677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinduced electron-transfer reaction in a ternary system involving zinc cytochrome c and plastocyanin. Interplay of monopolar and dipolar electrostatic interactions between metalloproteins.
    Zhou JS; Kostić NM
    Biochemistry; 1992 Aug; 31(33):7543-50. PubMed ID: 1324717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metalloprotein association, self-association, and dynamics governed by hydrophobic interactions: simultaneous occurrence of gated and true electron-transfer reactions between cytochrome f and cytochrome c(6) from Chlamydomonas reinhardtii.
    Grove TZ; Kostić NM
    J Am Chem Soc; 2003 Sep; 125(35):10598-607. PubMed ID: 12940743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of viscosity and temperature on the kinetics of the electron-transfer reaction between the triplet state of zinc cytochrome c and cupriplastocyanin.
    Ivković-Jensen MM; Kostić NM
    Biochemistry; 1997 Jul; 36(26):8135-44. PubMed ID: 9201962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox reactivity and reorganization energy of zinc cytochrome c cation radical.
    Crnogorac MM; Kostić NM
    Inorg Chem; 2000 Oct; 39(22):5028-35. PubMed ID: 11233199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the basic residues of cytochrome f responsible for electrostatic docking interactions with plastocyanin in vitro: relevance to the electron transfer reaction in vivo.
    Soriano GM; Ponamarev MV; Piskorowski RA; Cramer WA
    Biochemistry; 1998 Oct; 37(43):15120-8. PubMed ID: 9790675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of mutations in plastocyanin on the kinetics of the protein rearrangement gating the electron-transfer reaction with zinc cytochrome c. Analysis of the rearrangement pathway.
    Crnogorac MM; Shen C; Young S; Hansson O; Kostić NM
    Biochemistry; 1996 Dec; 35(51):16465-74. PubMed ID: 8987979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced electron transfer from the triplet state of zinc cytochrome c to ferricytochrome b5 is gated by configurational fluctuations of the diprotein complex.
    Qin L; Kostić NM
    Biochemistry; 1994 Oct; 33(42):12592-9. PubMed ID: 7918484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruthenium bisbipyridine complexes of horse heart cytochrome c: characterization and comparative intramolecular electron-transfer rates determined by pulse radiolysis and flash photolysis.
    Luo J; Reddy KB; Salameh AS; Wishart JF; Isied SS
    Inorg Chem; 2000 May; 39(11):2321-9. PubMed ID: 12526492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient kinetics of electron transfer from a variety of c-type cytochromes to plastocyanin.
    Meyer TE; Zhao ZG; Cusanovich MA; Tollin G
    Biochemistry; 1993 May; 32(17):4552-9. PubMed ID: 8387337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unimolecular and bimolecular oxidoreduction reactions involving diprotein complexes of cytochrome c and plastocyanin. Dependence of electron-transfer reactivity on charge and orientation of the docked metalloproteins.
    Peerey LM; Brothers HM; Hazzard JT; Tollin G; Kostić NM
    Biochemistry; 1991 Sep; 30(38):9297-304. PubMed ID: 1654092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of electrostatic interactions and of protein-protein orientations in electron-transfer reactions of plastocyanin with the triplet state of zinc cytochrome c and with zinc cytochrome c cation radical.
    Zhou JS; Kostić NM
    Biochemistry; 1993 May; 32(17):4539-46. PubMed ID: 8387336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic properties of cytochrome f: implications for docking with plastocyanin.
    Pearson DC; Gross EL; David ES
    Biophys J; 1996 Jul; 71(1):64-76. PubMed ID: 8804589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-protein interactions: photoinduced electron-transfer within the preformed and encounter complexes of a designed metallopeptide and cytochrome c.
    Lasey RC; Liu L; Zang L; Ogawa MY
    Biochemistry; 2003 Apr; 42(13):3904-10. PubMed ID: 12667081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic studies on the oxidation of cytochrome b(5) Phe35 mutants with cytochrome c, plastocyanin and inorganic complexes.
    Yao P; Wang YH; Sun BY; Xie Y; Hirota S; Yamauchi O; Huang ZX
    J Biol Inorg Chem; 2002 Apr; 7(4-5):375-83. PubMed ID: 11941495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.