These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 12453457)

  • 21. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center.
    Smith WC; Harland RM
    Cell; 1991 Nov; 67(4):753-65. PubMed ID: 1657405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for non-axial A/P patterning in the nonneural ectoderm of Xenopus and zebrafish pregastrula embryos.
    Read EM; Rodaway AR; Neave B; Brandon N; Holder N; Patient RK; Walmsley ME
    Int J Dev Biol; 1998 Sep; 42(6):763-74. PubMed ID: 9727832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus.
    Christian JL; Moon RT
    Genes Dev; 1993 Jan; 7(1):13-28. PubMed ID: 8422982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage.
    Zoltewicz JS; Gerhart JC
    Dev Biol; 1997 Dec; 192(2):482-91. PubMed ID: 9441683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo.
    Gimlich RL
    Dev Biol; 1986 Jun; 115(2):340-52. PubMed ID: 3709967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origin of the prechordal plate and patterning of the anteroposterior regional specificity of the involuting and extending archenteron roof of a urodele, Cynops pyrrhogaster.
    Kaneda T; Iwamoto Y; Motoki JY
    Dev Biol; 2009 Oct; 334(1):84-96. PubMed ID: 19643103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos.
    Kao KR; Elinson RP
    Dev Biol; 1988 May; 127(1):64-77. PubMed ID: 3282938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Xenopus embryos, BMP heterodimers are not required for mesoderm induction, but BMP activity is necessary for dorsal/ventral patterning.
    Eimon PM; Harland RM
    Dev Biol; 1999 Dec; 216(1):29-40. PubMed ID: 10588861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos.
    Bonstein L; Elias S; Frank D
    Dev Biol; 1998 Jan; 193(2):156-68. PubMed ID: 9473321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Competition between noggin and bone morphogenetic protein 4 activities may regulate dorsalization during Xenopus development.
    Re'em-Kalma Y; Lamb T; Frank D
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12141-5. PubMed ID: 8618860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperdorsoanterior embryos from Xenopus eggs treated with D2O.
    Scharf SR; Rowning B; Wu M; Gerhart JC
    Dev Biol; 1989 Jul; 134(1):175-88. PubMed ID: 2659411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cortical rotation is required for the correct spatial expression of nr3, sia and gsc in Xenopus embryos.
    Medina A; Wendler SR; Steinbeisser H
    Int J Dev Biol; 1997 Oct; 41(5):741-5. PubMed ID: 9415495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GATA-1 inhibits the formation of notochord and neural tissue in Xenopus embryo.
    Shibata K; Ishimura A; Maéno M
    Biochem Biophys Res Commun; 1998 Nov; 252(1):241-8. PubMed ID: 9813177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left-right asymmetry?
    Danilchik MV; Brown EE; Riegert K
    Development; 2006 Nov; 133(22):4517-26. PubMed ID: 17050623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mesoderm induction by fibroblast growth factor in early Xenopus development.
    Slack JM; Darlington BG; Gillespie LL; Godsave SF; Isaacs HV; Paterno GD
    Philos Trans R Soc Lond B Biol Sci; 1990 Mar; 327(1239):75-84. PubMed ID: 1969663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Primitive and definitive blood share a common origin in Xenopus: a comparison of lineage techniques used to construct fate maps.
    Lane MC; Sheets MD
    Dev Biol; 2002 Aug; 248(1):52-67. PubMed ID: 12142020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterning the marginal zone of early ascidian embryos: localized maternal mRNA and inductive interactions.
    Nishida H
    Bioessays; 2002 Jul; 24(7):613-24. PubMed ID: 12111722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression and functions of FGF-3 in Xenopus development.
    Lombardo A; Isaacs HV; Slack JM
    Int J Dev Biol; 1998 Nov; 42(8):1101-7. PubMed ID: 9879707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microtubule-mediated transport of organelles and localization of beta-catenin to the future dorsal side of Xenopus eggs.
    Rowning BA; Wells J; Wu M; Gerhart JC; Moon RT; Larabell CA
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1224-9. PubMed ID: 9037034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.