BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12453514)

  • 61. neo-Clerodane diterpenoids from Ajuga bracteosa.
    Castro A; Coll J; Arfan M
    J Nat Prod; 2011 May; 74(5):1036-41. PubMed ID: 21539300
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Responses of Spodoptera littoralis larvae to Tunisian plant extracts and to neo-clerodane diterpenoids isolated from Ajuga pseudoiva leaves.
    Ben Jannet H; Harzallah-Skhiri F; Mighri Z; Simmonds MS; Blaney WM
    Fitoterapia; 2000 Apr; 71(2):105-12. PubMed ID: 10727804
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dolabranes from the Chinese Mangrove, Ceriops tagal.
    Hu WM; Li MY; Li J; Xiao Q; Feng G; Wu J
    J Nat Prod; 2010 Oct; 73(10):1701-5. PubMed ID: 20886837
    [TBL] [Abstract][Full Text] [Related]  

  • 64. NMR shift data of neo-clerodane diterpenes from the genus Ajuga.
    Coll J
    Phytochem Anal; 2002; 13(6):372-80. PubMed ID: 12494759
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The first atisane diterpenoids from a liverwort: polyols from Lepidolaena clavigera.
    Perry NB; Burgess EJ; Baek SH; Weavers RT
    Org Lett; 2001 Dec; 3(26):4243-5. PubMed ID: 11784188
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Salvinorins D-F, new neoclerodane diterpenoids from Salvia divinorum, and an improved method for the isolation of salvinorin A.
    Munro TA; Rizzacasa MA
    J Nat Prod; 2003 May; 66(5):703-5. PubMed ID: 12762813
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ryanodane diterpenes from two Erythroxylum species.
    Barreiros ML; David JP; David JM; Xavier Lopes LM; de Sá MS; Costa JF; Almeida MZ; de Queiróz LP; Sant'ana AE
    Phytochemistry; 2007 Jul; 68(13):1735-9. PubMed ID: 17570446
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Insecticidal and antifeedant activities of clerodane diterpenoids isolated from the Indian bhant tree, Clerodendron infortunatum, against the cotton bollworm, Helicoverpa armigera.
    Abbaszadeh G; Srivastava C; Walia S
    J Insect Sci; 2014 Feb; 14():29. PubMed ID: 25373176
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Detection of synergistic combinations of Baccharis extracts with terbinafine against Trichophyton rubrum with high throughput screening synergy assay (HTSS) followed by 3D graphs. Behavior of some of their components.
    Rodriguez MV; Sortino MA; Ivancovich JJ; Pellegrino JM; Favier LS; Raimondi MP; Gattuso MA; Zacchino SA
    Phytomedicine; 2013 Oct; 20(13):1230-9. PubMed ID: 23906773
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Absolute Structures of Wedelolide Derivatives and Structure-Activity Relationships of Protein Tyrosine Phosphatase 1B Inhibitory ent-Kaurene Diterpenes from Aerial Parts of Wedelia spp. Collected in Indonesia and Japan.
    Abdjul DB; Yamazaki H; Kanno SI; Kirikoshi R; Tomizawa A; Takahashi O; Maarisit W; Losung F; Rotinsulu H; Wewengkang DS; Sumilat DA; Kapojos MM; Namikoshi M
    Chem Pharm Bull (Tokyo); 2018; 66(6):682-687. PubMed ID: 29863070
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structural diversity and defensive properties of norditerpenoid alkaloids.
    González-Coloma A; Reina M; Medinaveitia A; Guadaño A; Santana O; Martínez-Díaz R; Ruiz-Mesía L; Alva A; Grandez M; Díaz R; Gavín JA; De la Fuente G
    J Chem Ecol; 2004 Jul; 30(7):1393-408. PubMed ID: 15503527
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Chemical constituents of the aerial part of Derris elliptica.
    Wu X; Song Z; Xu H; Zhang H; Chen W; Liu H
    Fitoterapia; 2012 Jun; 83(4):732-6. PubMed ID: 22414317
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Antifeedant and phagostimulant activity of extracts and pure compounds from Hymenoxys robusta on Spodoptera exigua (Lepidoptera: Noctuidae) larvae.
    Juárez ZN; Fortuna AM; Sánchez-Arreola E; López-Olguín JF; Bach H; Hernández LR
    Nat Prod Commun; 2014 Jul; 9(7):895-8. PubMed ID: 25230487
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Antifeedant C20 diterpene alkaloids.
    González-Coloma A; Reina M; Guadaño A; Martínez-Díaz R; Díaz JG; García-Rodriguez J; Alva A; Grandez M
    Chem Biodivers; 2004 Sep; 1(9):1327-35. PubMed ID: 17191910
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Diterpenoids with diverse carbon skeletons from the roots of Pieris formosa and their analgesic and antifeedant activities.
    Niu C; Liu S; Li Y; Liu Y; Ma S; Liu F; Li L; Qu J; Yu S
    Bioorg Chem; 2020 Jan; 95():103502. PubMed ID: 31901756
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A new labdane diterpene from Leonurus heterophyllus.
    Cai XH; Che CT; Lam CK; Mak TC; Wu LJ
    J Asian Nat Prod Res; 2006; 8(7):599-603. PubMed ID: 17135043
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Neo-clerodane diterpenoid, a new metalloprotease snake venom inhibitor from Baccharis trimera (Asteraceae): anti-proteolytic and anti-hemorrhagic properties.
    Januário AH; Santos SL; Marcussi S; Mazzi MV; Pietro RC; Sato DN; Ellena J; Sampaio SV; França SC; Soares AM
    Chem Biol Interact; 2004 Dec; 150(3):243-51. PubMed ID: 15560891
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Larvicidal diterpenes from Pterodon polygalaeflorus.
    De Omena MC; Bento ES; De Paula JE; Sant'Ana AE
    Vector Borne Zoonotic Dis; 2006; 6(2):216-22. PubMed ID: 16796519
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Further anti-feedant neo-clerodanes from Teucrium tomentosum.
    Aravind S; Balachandran J; Ramanujam Ganesh M; Krishna Kumari GN
    Nat Prod Res; 2010; 24(1):7-12. PubMed ID: 20013466
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Two new neo-clerodane diterpenoids from Scutellaria barbata.
    Dai SJ; Shen L; Ren Y
    J Integr Plant Biol; 2008 Jun; 50(6):699-702. PubMed ID: 18713410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.