BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12454268)

  • 1. Isomerization of stable isotopically labeled elaidic acid to cis and trans monoenes by ruminal microbes.
    Proell JM; Mosley EE; Powell GL; Jenkins TC
    J Lipid Res; 2002 Dec; 43(12):2072-6. PubMed ID: 12454268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dilution rate and pH effects on the conversion of oleic acid to trans C18:1 positional isomers in continuous culture.
    AbuGhazaleh AA; Riley MB; Thies EE; Jenkins TC
    J Dairy Sci; 2005 Dec; 88(12):4334-41. PubMed ID: 16291625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial biohydrogenation of oleic acid to trans isomers in vitro.
    Mosley EE; Powell GL; Riley MB; Jenkins TC
    J Lipid Res; 2002 Feb; 43(2):290-6. PubMed ID: 11861671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isomerization of vaccenic acid to cis and trans C18:1 isomers during biohydrogenation by rumen microbes.
    Laverroux S; Glasser F; Gillet M; Joly C; Doreau M
    Lipids; 2011 Sep; 46(9):843-50. PubMed ID: 21706384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential biohydrogenation and isomerization of [U-(13)C]oleic and [1-(13)C]oleic acids by mixed ruminal microbes.
    Mosley EE; Nudda A; Corato A; Rossi E; Jenkins T; McGuire MA
    Lipids; 2006 May; 41(5):513-7. PubMed ID: 16933796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docosahexaenoic acid elevates trans-18:1 isomers but is not directly converted into trans-18:1 isomers in ruminal batch cultures.
    Klein CM; Jenkins TC
    J Dairy Sci; 2011 Sep; 94(9):4676-83. PubMed ID: 21854940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen.
    van de Vossenberg JL; Joblin KN
    Lett Appl Microbiol; 2003; 37(5):424-8. PubMed ID: 14633116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The production of 10-hydroxystearic and 10-ketostearic acids is an alternative route of oleic acid transformation by the ruminal microbiota in cattle.
    Jenkins TC; Abughazaleh AA; Freeman S; Thies EJ
    J Nutr; 2006 Apr; 136(4):926-31. PubMed ID: 16549452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydrogenation of some cis- and trans-octadecenoic acids to stearic acid by a rumen Fusocillus sp.
    Kemp P; Lander DJ; Gunstone FD
    Br J Nutr; 1984 Jul; 52(1):165-70. PubMed ID: 6743636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting conjugated linoleic acid and trans-C18:1 fatty acid production by mixed ruminal bacteria.
    Martin SA; Jenkins TC
    J Anim Sci; 2002 Dec; 80(12):3347-52. PubMed ID: 12542176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohydrogenation of linolenic acid to stearic acid by the rumen microbial population yields multiple intermediate conjugated diene isomers.
    Lee YJ; Jenkins TC
    J Nutr; 2011 Aug; 141(8):1445-50. PubMed ID: 21653571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of enriched conjugated linoleic acid isomers in cultures of ruminal microorganisms after dosing with 1-(13)C-linoleic acid.
    Lee YJ; Jenkins TC
    J Microbiol; 2011 Aug; 49(4):622-7. PubMed ID: 21887646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of high-oil corn or added corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets.
    Duckett SK; Andrae JG; Owens FN
    J Anim Sci; 2002 Dec; 80(12):3353-60. PubMed ID: 12542177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replacing cis octadecenoic acid with trans isomers in media containing rat adipocytes stimulates lipolysis and inhibits glucose utilization.
    Cromer KD; Jenkins TC; Thies EJ
    J Nutr; 1995 Sep; 125(9):2394-9. PubMed ID: 7666258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of conjugated linoleic acids and 18 : 1 fatty acids by ruminal bacteria: products and mechanisms.
    McKain N; Shingfield KJ; Wallace RJ
    Microbiology (Reading); 2010 Feb; 156(Pt 2):579-588. PubMed ID: 19926650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of oleic acid nitration by *NO(2).
    Jain K; Siddam A; Marathi A; Roy U; Falck JR; Balazy M
    Free Radic Biol Med; 2008 Aug; 45(3):269-83. PubMed ID: 18457679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monounsaturated trans fatty acids, elaidic acid and trans-vaccenic acid, metabolism and incorporation in phospholipid molecular species in hepatocytes.
    Woldseth B; Retterstøl K; Christophersen BO
    Scand J Clin Lab Invest; 1998 Dec; 58(8):635-45. PubMed ID: 10088200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monensin by fat interactions on trans fatty acids in cultures of mixed ruminal microorganisms grown in continuous fermentors fed corn or barley.
    Jenkins TC; Fellner V; McGuffey RK
    J Dairy Sci; 2003 Jan; 86(1):324-30. PubMed ID: 12613874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro.
    Honkanen AM; Griinari JM; Vanhatalo A; Ahvenjärvi S; Toivonen V; Shingfield KJ
    J Dairy Sci; 2012 Mar; 95(3):1376-94. PubMed ID: 22365221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmentation of vaccenate production and suppression of vaccenate biohydrogenation in cultures of mixed ruminal microbes.
    Fukuda S; Suzuki Y; Murai M; Asanuma N; Hino T
    J Dairy Sci; 2006 Mar; 89(3):1043-51. PubMed ID: 16507700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.