BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12454419)

  • 1. Human osteoblast-like cells in three-dimensional culture with fluid flow.
    Botchwey EA; Pollack SR; El-Amin S; Levine EM; Tuan RS; Laurencin CT
    Biorheology; 2003; 40(1-3):299-306. PubMed ID: 12454419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering.
    Du D; Furukawa KS; Ushida T
    Biotechnol Bioeng; 2009 Apr; 102(6):1670-8. PubMed ID: 19160373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of rotating perfusion bioreactor system and application for bone tissue engineering].
    Li X; Li D; Wang L; Wang Z; Lu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):66-70. PubMed ID: 17333894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of osteoblastic cells in a microfluidic environment.
    Leclerc E; David B; Griscom L; Lepioufle B; Fujii T; Layrolle P; Legallaisa C
    Biomaterials; 2006 Feb; 27(4):586-95. PubMed ID: 16026825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of three-dimensional fluid flow in rotating bioreactors for tissue engineering.
    Botchwey EA; Pollack SR; Levine EM; Johnston ED; Laurencin CT
    J Biomed Mater Res A; 2004 May; 69(2):205-15. PubMed ID: 15057993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells.
    Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL
    Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional fabrication of engineered bone with human bio-derived bone scaffolds in a rotating wall vessel bioreactor.
    Song K; Liu T; Cui Z; Li X; Ma X
    J Biomed Mater Res A; 2008 Aug; 86(2):323-32. PubMed ID: 17969035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Rotating three-dimensional dynamic culture of osteoblasts seeded on segmental scaffolds with controlled internal channel architectures for construction of segmental tissue engineered bone in vitro].
    Wang L; Wang Z; Li X; Li DC; Xu SF; Lu BH
    Zhonghua Yi Xue Za Zhi; 2007 Jan; 87(3):200-3. PubMed ID: 17425853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Fabrication of scaffold with controlled porous structure and flow perfusion culture in vitro].
    Li X; Li DC; Wang L; Lu BH; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):579-83. PubMed ID: 16176096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow cytometric cell cycle analysis of muscle precursor cells cultured within 3D scaffolds in a perfusion bioreactor.
    Flaibani M; Luni C; Sbalchiero E; Elvassore N
    Biotechnol Prog; 2009; 25(1):286-95. PubMed ID: 19224607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds.
    Zhao F; Grayson WL; Ma T; Irsigler A
    J Cell Physiol; 2009 May; 219(2):421-9. PubMed ID: 19170078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoblast response to continuous phase macroporous scaffolds under static and dynamic culture conditions.
    Meretoja VV; Malin M; Seppälä JV; Närhi TO
    J Biomed Mater Res A; 2009 May; 89(2):317-25. PubMed ID: 18431787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue engineered bone: measurement of nutrient transport in three-dimensional matrices.
    Botchwey EA; Dupree MA; Pollack SR; Levine EM; Laurencin CT
    J Biomed Mater Res A; 2003 Oct; 67(1):357-67. PubMed ID: 14517896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation.
    Haimi S; Gorianc G; Moimas L; Lindroos B; Huhtala H; Räty S; Kuokkanen H; Sándor GK; Schmid C; Miettinen S; Suuronen R
    Acta Biomater; 2009 Oct; 5(8):3122-31. PubMed ID: 19428318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells.
    Jones JR; Tsigkou O; Coates EE; Stevens MM; Polak JM; Hench LL
    Biomaterials; 2007 Mar; 28(9):1653-63. PubMed ID: 17175022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and detection of tissue-engineered bones with bio-derived scaffolds in a rotating bioreactor.
    Song K; Yang Z; Liu T; Zhi W; Li X; Deng L; Cui Z; Ma X
    Biotechnol Appl Biochem; 2006 Sep; 45(Pt 2):65-74. PubMed ID: 16681463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow perfusion culture of human fetal bone cells in large beta-tricalcium phosphate scaffold with controlled architecture.
    Wang L; Hu YY; Wang Z; Li X; Li DC; Lu BH; Xu SF
    J Biomed Mater Res A; 2009 Oct; 91(1):102-13. PubMed ID: 18767058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics.
    Holtorf HL; Sheffield TL; Ambrose CG; Jansen JA; Mikos AG
    Ann Biomed Eng; 2005 Sep; 33(9):1238-48. PubMed ID: 16133930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold.
    Valarmathi MT; Yost MJ; Goodwin RL; Potts JD
    Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.