BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12454427)

  • 1. Development of a technique to determine strains in tendons using the cell nuclei.
    Screen HR; Lee DA; Bader DL; Shelton JC
    Biorheology; 2003; 40(1-3):361-8. PubMed ID: 12454427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ cell nucleus deformation in tendons under tensile load; a morphological analysis using confocal laser microscopy.
    Arnoczky SP; Lavagnino M; Whallon JH; Hoonjan A
    J Orthop Res; 2002 Jan; 20(1):29-35. PubMed ID: 11853087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles.
    Screen HR; Shelton JC; Bader DL; Lee DA
    Biochem Biophys Res Commun; 2005 Oct; 336(2):424-9. PubMed ID: 16137647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties.
    Screen HR; Lee DA; Bader DL; Shelton JC
    Proc Inst Mech Eng H; 2004; 218(2):109-19. PubMed ID: 15116898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading.
    Lavagnino M; Arnoczky SP; Kepich E; Caballero O; Haut RC
    Biomech Model Mechanobiol; 2008 Oct; 7(5):405-16. PubMed ID: 17901992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism.
    Arnoczky SP; Tian T; Lavagnino M; Gardner K
    J Orthop Res; 2004 Mar; 22(2):328-33. PubMed ID: 15013092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ deflection of tendon cell-cilia in response to tensile loading: an in vitro study.
    Lavagnino M; Arnoczky SP; Gardner K
    J Orthop Res; 2011 Jun; 29(6):925-30. PubMed ID: 21259338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time dependence of cyclic tensile strain on collagen production in tendon fascicles.
    Maeda E; Shelton JC; Bader DL; Lee DA
    Biochem Biophys Res Commun; 2007 Oct; 362(2):399-404. PubMed ID: 17719009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of local strain on cell membrane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells.
    Sato K; Adachi T; Ueda D; Hojo M; Tomita Y
    J Biomech; 2007; 40(6):1246-55. PubMed ID: 16887125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of in vitro stress-deprivation and cyclic loading on the length of tendon cell cilia in situ.
    Gardner K; Arnoczky SP; Lavagnino M
    J Orthop Res; 2011 Apr; 29(4):582-7. PubMed ID: 20957738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle.
    Deguchi S; Maeda K; Ohashi T; Sato M
    J Biomech; 2005 Sep; 38(9):1751-9. PubMed ID: 16005465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal analysis of local and cellular strains in chondrocyte-agarose constructs subjected to mechanical shear.
    Sawae Y; Shelton JC; Bader DL; Knight MM
    Ann Biomed Eng; 2004 Jun; 32(6):860-70. PubMed ID: 15255216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regulation of gene expression in isolated tendon fascicles exposed to cyclic tensile strain in vitro.
    Maeda E; Shelton JC; Bader DL; Lee DA
    J Appl Physiol (1985); 2009 Feb; 106(2):506-12. PubMed ID: 19036888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of tenascin-C in adaptation of tendons to compressive loading.
    Martin JA; Mehr D; Pardubsky PD; Buckwalter JA
    Biorheology; 2003; 40(1-3):321-9. PubMed ID: 12454422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating load relaxation mechanics in tendon.
    Screen HR
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):51-8. PubMed ID: 19627771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondrocyte deformation induces mitochondrial distortion and heterogeneous intracellular strain fields.
    Knight MM; Bomzon Z; Kimmel E; Sharma AM; Lee DA; Bader DL
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):180-91. PubMed ID: 16520962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of exercise on tenocyte cellularity and tenocyte nuclear morphology in immature and mature equine digital tendons.
    Stanley RL; Goodship AE; Edwards B; Firth EC; Patterson-Kane JC
    Equine Vet J; 2008 Mar; 40(2):141-6. PubMed ID: 18093891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new experimental system for simultaneous application of cyclic tensile strain and fluid shear stress to tenocytes in vitro.
    Maeda E; Hagiwara Y; Wang JH; Ohashi T
    Biomed Microdevices; 2013 Dec; 15(6):1067-75. PubMed ID: 23881419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gap junction permeability between tenocytes within tendon fascicles is suppressed by tensile loading.
    Maeda E; Ye S; Wang W; Bader DL; Knight MM; Lee DA
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):439-47. PubMed ID: 21706231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Flow-induced hardening of endothelial nucleus..." by Deguchi et al.
    Bischoff JE
    J Biomech; 2006; 39(7):1361-2; author reply1362. PubMed ID: 16574128
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.