BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12454437)

  • 21. Quantitative viscoelastic parameters measured by harmonic motion imaging.
    Vappou J; Maleke C; Konofagou EE
    Phys Med Biol; 2009 Jun; 54(11):3579-94. PubMed ID: 19454785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanocomposite ion gels based on silica nanoparticles and an ionic liquid: ionic transport, viscoelastic properties, and microstructure.
    Ueno K; Hata K; Katakabe T; Kondoh M; Watanabe M
    J Phys Chem B; 2008 Jul; 112(30):9013-9. PubMed ID: 18610964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viscoelastic properties of solutions of ovine submaxillary mucin.
    Soby LM; Jamieson AM; Blackwell J; Jentoft N
    Biopolymers; 1990 Aug 15-Sep; 29(10-11):1359-66. PubMed ID: 2361150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rheology of viscoelastic mixed surfactant solutions: effect of scission on nonlinear flow and rheochaos.
    Pimenta P; Pashkovski EE
    Langmuir; 2006 Apr; 22(9):3980-7. PubMed ID: 16618136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels.
    Pääkkö M; Ankerfors M; Kosonen H; Nykänen A; Ahola S; Osterberg M; Ruokolainen J; Laine J; Larsson PT; Ikkala O; Lindström T
    Biomacromolecules; 2007 Jun; 8(6):1934-41. PubMed ID: 17474776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheological properties of fast skeletal myosin rod and light meromyosin from walleye pollack and white croaker: contribution of myosin fragments to thermal gel formation.
    Fukushima H; Satoh Y; Yoon SH; Togashi M; Nakaya M; Watabe S
    J Agric Food Chem; 2005 Nov; 53(23):9193-8. PubMed ID: 16277422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photochemical control of network structure in gels and photo-induced changes in their viscoelastic properties.
    Hosono N; Furukawa H; Masubuchi Y; Watanabe T; Horie K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):285-9. PubMed ID: 17344037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorbed gels versus brushes: viscoelastic differences.
    Dutta AK; Belfort G
    Langmuir; 2007 Mar; 23(6):3088-94. PubMed ID: 17286418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and rheological properties of aqueous viscoelastic solutions and gels of tripodal cholamide-based self-assembled supramolecules.
    Terech P; Maitra U
    J Phys Chem B; 2008 Oct; 112(43):13483-92. PubMed ID: 18834170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Viscoelastic properties of normal human synovia and their relation to biomechanics].
    Rainer F; Ribitsch V
    Z Rheumatol; 1985; 44(3):114-9. PubMed ID: 4060903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Small-angle X-ray scattering and rheological characterization of alginate gels. 3. Alginic acid gels.
    Draget KI; Stokke BT; Yuguchi Y; Urakawa H; Kajiwara K
    Biomacromolecules; 2003; 4(6):1661-8. PubMed ID: 14606893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using in situ rheology to characterize the microstructure in photopolymerized polyacrylamide gels for DNA electrophoresis.
    Wang J; Ugaz VM
    Electrophoresis; 2006 Sep; 27(17):3349-58. PubMed ID: 16892481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of a protein-based adhesive elastomer secreted by the Australian frog Notaden bennetti.
    Graham LD; Glattauer V; Huson MG; Maxwell JM; Knott RB; White JW; Vaughan PR; Peng Y; Tyler MJ; Werkmeister JA; Ramshaw JA
    Biomacromolecules; 2005; 6(6):3300-12. PubMed ID: 16283759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rheology of biofilms formed at the surface of NF membranes in a drinking water production unit.
    Houari A; Picard J; Habarou H; Galas L; Vaudry H; Heim V; Di Martino P
    Biofouling; 2008; 24(4):235-40. PubMed ID: 18392991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Viscoelastic characterizations of acellular dermal matrix (ADM) preparations for use as injectable implants.
    Ho HO; Tsai YT; Chen RN; Sheu MT
    J Biomed Mater Res A; 2004 Jul; 70(1):83-96. PubMed ID: 15174112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic study of silica gels by a new rheological ultrasonic investigation.
    Ould Ehssein C; Serfaty S; Griesmar P; Le Huerou JY; Martinez L; Caplain E; Wilkie-Chancellier N; Gindre M; Gouedard G; Figuiere P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e881-5. PubMed ID: 16797663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and mechanical properties of UV-photo-cross-linked poly(N-vinyl-2-pyrrolidone) hydrogels.
    D'Errico G; De Lellis M; Mangiapia G; Tedeschi A; Ortona O; Fusco S; Borzacchiello A; Ambrosio L
    Biomacromolecules; 2008 Jan; 9(1):231-40. PubMed ID: 18163572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quick self-healing and thermo-reversible liposome gel.
    Rao Z; Inoue M; Matsuda M; Taguchi T
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):196-202. PubMed ID: 20855187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of gum ghatti (Anogeissus latifolia): a structural and rheological approach.
    Kaur L; Singh J; Singh H
    J Food Sci; 2009 Aug; 74(6):E328-32. PubMed ID: 19723196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison in fractal dimension between those obtained from structure factor and viscoelasticity of gel networks of 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol in polystyrene melt at gel point.
    Takenaka M; Kobayashi T; Saijo K; Tanaka H; Iwase N; Hashimoto T; Takahashi M
    J Chem Phys; 2004 Aug; 121(7):3323-8. PubMed ID: 15291643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.